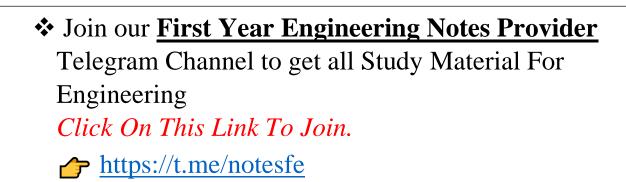
Uploaded By :-

## FIRST YEAR ENGINEERING NOTES (MU)


### **BY ONE CLICK TEAM**



Telegram Channel

Book Name :- Engineering Physics 2 By Swati Bawra Jamnadas Publication

Shared By :- Shikha Singh



 Access To Our Telegram Bot to get First Year Engineering Study Material in one Click.
 Click On this Link To get Access.

<u>https://t.me/notesfebot</u>

Also Join our Official Telegram Group Click on this Link To Join.

<u>https://t.me/joinchat/TlA6CacSssTbetyO</u>



As per New Syllabus 2019 UNIVERSITY OF MUMBAI

# ENGINEERING PHYSICS-II F. E. Semester-II

# Dr. Swati Bawra



Scanned with CamScanne

## PREFACE

"The Science of today is the Technology of tomorrow." ...... Edward Teller It is said that Science is the mother of all Technologies, Though technologies change very rapidly the basic concepts of Science remain largely unchanged. Physics, a major section of Science plays a pivotal role in the field of Engineering. The subject, Engineering Physics bridges the gap between theoretical Physics and Applied Engineering.

This book on Engineering Physics is written according to the revised (2019-2020) syllabus of The University of Mumbai. The objective of this course is to understand the basic concepts of Physics and the founding principles of technology. This course will develop the scientific temperament in the learners for scientific observations, recording and inference drawing essentials for technological studies.

The salient features of the book are :

- i) The subject is presented in a very simple and lucid manner.
- ii) The topics are explained in a logical and systematic way with plenty of illustrative simple diagrams.
- iii) The mathematical parts are treated very methodically with related solved examples.
- iv) Modules are complete with previous university question papers along with the solutions.
- v) Above all to make this book a textbook plenty of systematically illustrated Mathematical Problems and Review Questions are retained and expanded.

I hope that this book will serve as an important learning resource for the students of Engineering courses.

Feedback and suggestions from the readers will be really appreciated.

Dr. Swati Bawra

## SYLLABUS

## Engineering Physics - II

First Year Engineering (Semester - II)

(Mumbal University - Common for All Branches of Engineering)

## Diffraction

(04 Hours)

TO STORING

(Prerequisites : Wave front and Huygen's principle, Reflection and refraction, Diffraction, Fresnel diffraction and Fraunhoffer diffraction.)

Diffraction : Fraunhoffer diffraction at single slit, Diffraction Grating, Resolving power of a grating, Applications of diffraction grating, Determination of wavelength of light using plane transmission grating.

## (2)

3,

### Laser and Fibre Optics

an and the second the line of the top

有,当时我们的这样。"我说话,你就能能好,我是不可以出来了。"

### (06 Hours)

(Prerequisites : Absorption, recombination. energy bands of p-n junction, Refractive index of a material, Snell's law.)

Laser : Spontaneous emission and stimulated emission, Metastable state, Population inversion, Types of pumping, Resonant cavity, Einsteins's equations, Helium Neon laser, Nd:YAG laser, Semiconductor laser, Applications of laser- Holography.

Fibre optics : Numerical Aperture for step index fibre, Critical angle, Angle of acceptance, V number, Number of modes of propagation, Types of optical fibres, Fibre optic communi-

cation system.

## Electrodynamics

(Prerequisites : Electric Charges, Coulomb's law-force between two point charges, Electric field, Electric field due to a point charge, Electric field lines, Electric dipole, Electric field due to a dipole, Gauss's law, Faraday's law.)

Scalar and Vector field, Physical significance of gradient, Curl and divergence in Cartesian co-ordinate system, Gauss's law for electrostatics, Gauss's law for magnetostatics, Faraday's Law and Ampere's circuital law, Maxwell's equations (Free space and time varying fields).

#### 4. Relativity

(Prerequisites : Cartesian co-ordinate system)

Special theory of Relativity : Inertial and Non-inertial Frames of reference, Galilean transformations, Lorentz transformations (Space-time coordinates), Time Dilation, Length Contraction and Mass-Energy relation.

#### 5. Nanotechnology

static focusing.)

(Prerequisites : Scattering of electrons, Tunneling effect, Electrostatic focusing, Magneto

(03 Hours)

(04 Hours)

(02 Hours)

Nanomaterials : Properties (Optical, electrical, magnetic, structural, mechanical applications, Surface to volume ratio, Two main approaches in nanotechnology - Botte technique and Top down technique.

Tools for characterization of Nanoparticles : Scanning Electron Microscope ( Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM). Metho synthesize Nanomaterials : Ball milling, Sputtering, Vapour deposition, Solgel.

### 6. Physics of Sensors

(05 H

(Prerequisites : Transducer concept, Meaning of calibration, Piezoelectric effect.) Resistive Sensors :

(a) Temperature measurement : Pt100 construction, calibration,

(b) Humidity measurement using resistive sensors.

Pressure Sensor : Concept of pressure sensing by capacitive, Flux and inductive me Analog pressure sensor — Construction, Working and Calibration and Applications.

Piezoelectric Transducers : Concept of piezoelectricity, Use of piezoelectric trans as ultrasonic generator. Application of ultrasonic transducer for distance measurer Liquid and air velocity measurement.

Optical sensor : Photodiode, Construction and use of photodiode as ambient measurement and flux measurement.

Pyroelectric Sensors : Construction and working principle, Application of pyroelectric se as bolometer.

star \* "

(37 ON 81

TO A CARGE AND A CONTRACT OF A DESCRIPTION OF A DESCRIPTI

· · ·

## CONTENTS

| 1.  | 1. Diffraction 1-1 to 1-40 |                                                                                                                  |  |  |  |  |
|-----|----------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | 1.1                        | Introduction                                                                                                     |  |  |  |  |
|     | 1.2                        | Prerequisites                                                                                                    |  |  |  |  |
|     | 1.3                        | Fraunhoffer Diffraction 1-5                                                                                      |  |  |  |  |
|     | 1.4                        | Diffraction Grating and its Characteristics 1-13                                                                 |  |  |  |  |
|     | 1.5                        | Resolving Power of a Diffraction Grating 1-15                                                                    |  |  |  |  |
|     | 1.6                        | Application of Diffraction Grating :<br>Determination of Unknown Wavelength of Light by Diffraction Grating 1-19 |  |  |  |  |
|     | 1.7                        | Solved Problems                                                                                                  |  |  |  |  |
|     |                            | Important Points to Remember                                                                                     |  |  |  |  |
|     |                            | Exericse 1-38                                                                                                    |  |  |  |  |
|     |                            | Previous University Examination Questions with Solutions                                                         |  |  |  |  |
| 2.  |                            | r and Fibre Optics 2-1 to 2-58                                                                                   |  |  |  |  |
|     | LASE                       |                                                                                                                  |  |  |  |  |
|     | 2.1                        | Introduction 2-3                                                                                                 |  |  |  |  |
|     | 2.2                        | Quantum Processes of Laser Production                                                                            |  |  |  |  |
|     | 2.3                        | Einstein's Coefficients                                                                                          |  |  |  |  |
|     | 2.4                        | Basic Requirements for LASER Production                                                                          |  |  |  |  |
|     | 2.5                        | Types of Pumping : Three Level and Four Level Lasing Schemes                                                     |  |  |  |  |
|     | 2.6                        | LASER Sources : He-Ne, Nd-YAG, Semiconductor                                                                     |  |  |  |  |
|     | 2.7                        | Applications of LASER : Holography and Other Applications                                                        |  |  |  |  |
|     |                            | Important Points to Remember                                                                                     |  |  |  |  |
|     |                            | Exericse                                                                                                         |  |  |  |  |
|     |                            | Previous University Examination Questions with Solutions                                                         |  |  |  |  |
|     | FIBR                       | REOPTICS                                                                                                         |  |  |  |  |
|     | 2.8                        | Introduction                                                                                                     |  |  |  |  |
|     | 2.9                        | Principle of Fibre Optics : Total Internal Reflection                                                            |  |  |  |  |
|     | 2.10                       | Basic Construction of Optical Fibres                                                                             |  |  |  |  |
|     | 2.11                       | Numerical Aperture and Angle of Acceptance                                                                       |  |  |  |  |
|     | 2.12                       | Mode of Propagation                                                                                              |  |  |  |  |
|     | 2.13                       | Applications of Optical Fibres                                                                                   |  |  |  |  |
|     | 2.14                       | Solved Problems                                                                                                  |  |  |  |  |
|     |                            | Important Points to Remember                                                                                     |  |  |  |  |
|     |                            | Exericse                                                                                                         |  |  |  |  |
|     |                            | Previous University Examination Questions with Solutions                                                         |  |  |  |  |
| 3.  | Elec                       | trodynamics 3-1 to 3-4                                                                                           |  |  |  |  |
|     | 3.1                        | Introduction 3-2                                                                                                 |  |  |  |  |
| 1.5 | 3.2                        | Prerequisites                                                                                                    |  |  |  |  |
|     |                            |                                                                                                                  |  |  |  |  |

+

٠

| -          | 3   | 3.3 Scalar and Vector Fields                                                | 8-7         |
|------------|-----|-----------------------------------------------------------------------------|-------------|
|            |     | 4 Physical Significance of Gradient, Divergence and Curl                    |             |
| i A        | 3   | .5 Maxwell's Equations                                                      |             |
|            | 3.  | .6 Solved Problems                                                          |             |
|            |     | Important Points to Remember                                                | 3-37        |
|            |     | Review Questions                                                            |             |
|            |     | Exericse                                                                    | 3-40        |
|            |     | Previous University Questions and Solutions                                 | 3-41        |
| 4.         | R   | elativity 4-1 1                                                             | to 4-31     |
|            | 4.  | 1 Introduction                                                              | 4-2         |
|            | 4.  | 2 Einsten's Classical Theory of Relativity (Newtonian Theory of Relativity) | 4-2         |
|            | 4.  | 3 Einstein's Special Theory of Relativity                                   | 4-4         |
|            | 4.  | 4 Time Dilation                                                             | 4-8         |
|            | 4.  | 5 Length Contraction                                                        | 4-9         |
|            | 4.( | 6 Einstein's Mass-Energy Relation                                           | 4-10        |
|            | 4.  | 7 Important Points to Remembers                                             | 4-12        |
|            | 4.8 |                                                                             |             |
|            | 4.9 | 9 Review Questions                                                          | 4-30        |
| 5.         | Na  | anotechnology 5-1 to                                                        | o 5-19      |
|            | 5.1 |                                                                             |             |
|            | 5.2 |                                                                             |             |
|            | 5.3 |                                                                             |             |
|            | 5.4 |                                                                             |             |
|            | 5.5 |                                                                             |             |
|            | 5.6 |                                                                             |             |
|            |     | Important Points to Remember                                                |             |
|            |     | Exericse                                                                    |             |
|            |     | Previous University Questions and Solutions                                 |             |
|            | Phy |                                                                             |             |
|            | .1  | Sics of Sensors<br>Introduction                                             | 6-18        |
|            | .2  | Prerequisites                                                               | 6-2         |
| 6          |     | Prerequisites                                                               | 6-2         |
| 6.         |     | Resistive Sensors : Resistive Transducers                                   | 6-2         |
|            |     | Pressure Sensor or Pressure Transducer                                      | 6-7         |
| 6.:<br>c ( |     | Piezoelectric Sensors or Transducers                                        | 6-11        |
| 6.e        |     |                                                                             | 6-13        |
| 5.7        |     | Pyroelectric Sensors                                                        | 6-15        |
|            |     | Important Points to Remember                                                | 6-17        |
|            | •   | Exericse                                                                    | 6-18        |
|            |     | Total                                                                       | 207         |
|            |     |                                                                             | - 1 A - 1 A |





(Prerequisites : Wave front and Huygen's principle, Reflection and refraction, Diffraction, Fresnel diffraction and Fraunhoffer diffraction.)

**Diffraction :** Fraunhoffer diffraction at single slit, Diffraction Grating, Resolving power of a grating, Applications of diffraction grating, Determination of wavelength of light using plane transmission grating . (04 Hours)

(Weightage - 15%)

P. - LINE AND CONSIDER

**Course Outcome : CO1 :** Learner will be able to illustrate the knowledge of diffraction through slits and its applications.

## SYNOPSIS

- 1.1 Introduction
- 1.2 Prerequisites
- 1.3 Fraunhoffer Diffraction
- 1.4 Diffraction Grating and its Characteristics
- 1.5 Resolving Power of a Diffraction Grating
- 1.6 Application of Diffraction Grating : Determination of Unknown Wavelength of Light by Diffraction Grating
- 1.7 Solved Problems
  - Important Points to Remember Exercise

Previous University Examination Questions with Solutions

### Engineering Physics - II

#### (1-2)

Diff

## 1.1 Introduction

It is a matter of common experience that waves bend round obstacles placed in path. The amount of bending, however, depends upon the size of the obstacle and wavelength of the incident wave. Thus when an obstacle or a small aperture, of the of the wavelength of light, is placed in the path of light, the light deviates from straight propagation and enters in the geometric shadow. This phenomenon is called diffractio light which is an important characteristic of wave motion.

Examples of diffraction effect in day to day life are :

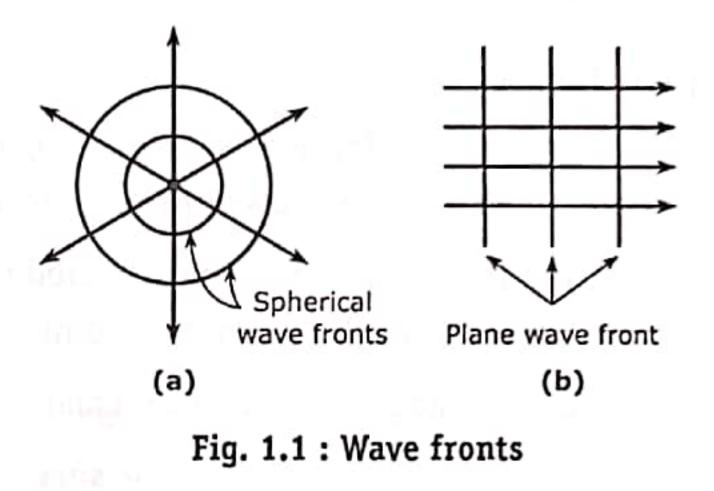
- (i) A series of dark lines parallel to the fingers when one tries to view a st source of light through the gap between two closely spaced fingers.
- (ii) The colours seen on a compact disc.

The phenomenon of diffraction leads to a basic limitation in resolution of instruments like camera, telescope, microscope, etc.

The diffraction effect is pronounced if the size of the obstacle or aperture is of order of the wavelength of the incident waves. As the wavelength of visible  $1^{4}$  (~  $10^{-6}$  m) is much smaller than the size of the objects around us diffraction effect is much visible in our day to day life.

## 2 Prerequisites

## 1.2.1 : Wave Front and Huygen's Principle

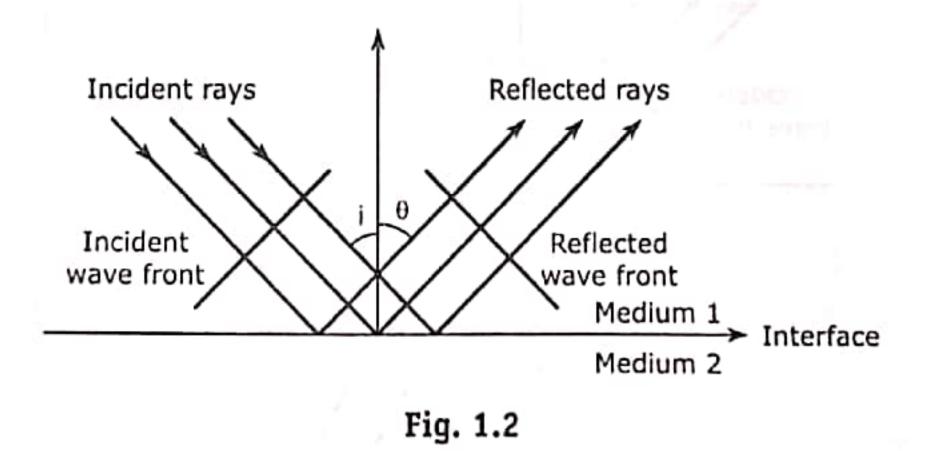

- A wave is a disturbance that propagates through a medium in space and time. Duri a wave motion the particles of the medium oscillate about their mean position as energy is transferred from one particle to another. Every particle begins to vibra little later than its predecessor. Hence, there is a progressive change of phase fr particle to particle in the direction of wave propagation.
- Huygen introduced the concept of a wave front which is an imaginary surf formed by the equiphase points of a wave motion. For a sinusoidal plane w the wave fronts are planes perpendicular to the direction of propagation.
- During a wave motion, the propagation of a wave front is explained by Huyge principle as follows :
  - (i) Each point on the given wave front acts as a source of secondary wavelets r

- (ii) The secondary wavelets from each point travel through space in all directions with velocity of light.
- (iii) A surface touching the secondary wavelets tangentially in the forward direction at any given time constructs the new wave front at that instant. This is known as secondary wave front.

## The propagation of a wave is visualized as the propagation of the wave fronts.

For a point source of light the emitted energy propagates uniformly in all directions and the wave fronts are spherical as seen in Fig. 1.1 (a). These waves are called spherical waves.

For broad source that produces a parallel peam of light the energy propagates uniformly n one direction and the wave fronts are planes as seen in Fig. 1.1 (b). These waves are called plane waves.




shat you a second of the state of the second s

## 1.2.2 : Reflection and Refraction

## A) Reflection

When a beam of light is incident on an interface separating two optical media the ight is partly reflected into the first medium and partly transmitted into the second medium. This phenomenon is called reflection of light.



In Fig. 1.2, it is seen that a plane wave is incident at the angle of incidence, 'i' on the nterface and is reflected at the angle of reflection, ' $\theta$ '. The phenomenon follow the laws of reflection, *i.e.*,

Diffe

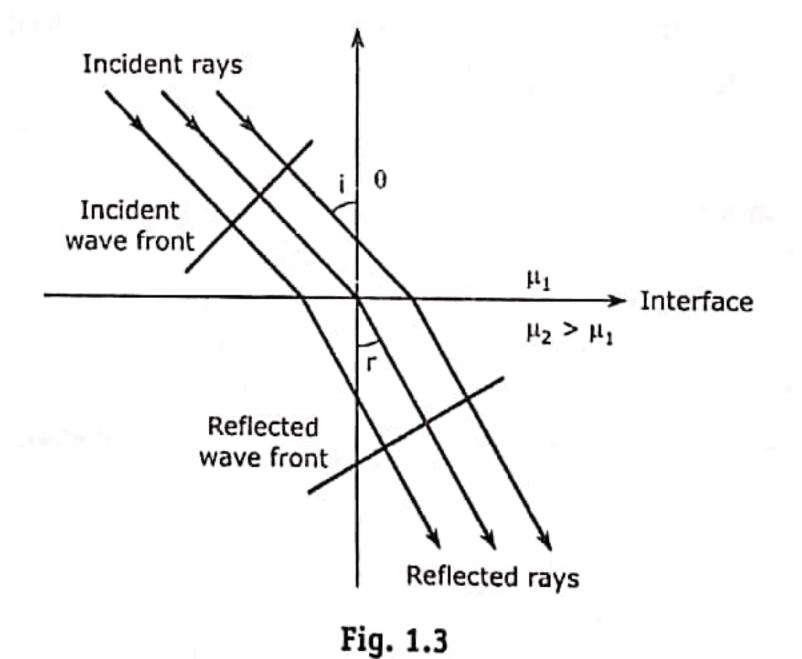
(i) The incident beam, the reflected beam and the normal to the interface, all the same plane called the plane of incidence.

(ii) The angle of incidence, i and the angle of reflection,  $\theta$  are equal.

According to Huygen's theory a beam of light is represented by a series of w fronts which are perpendicular to the beam. Hence, the phenomenon of reflection is change of direction of a wave front at an interface between two transponent media, as in Fig. 1.2.

## (B) Refraction

**Engineering Physics - II** 


Refraction is defined as the bending of light wave as it passes from one transpa medium to another. The laws of refraction state that

- (i) the incident ray, the refracted ray and the normal drawn perpendicular to interface between the two media, lie in the same plane.
- (ii) the angle of incidence, i and the angle of refraction, r obey Snell's law, i.

$$\frac{\sin i}{\sin r} = \frac{\mu_2}{\mu_1}$$

where  $\mu_1$  and  $\mu_2$  are the refractive indices of the first and the second matrix respectively.

The bending of wave front during the incidence and refraction of light wave is s in Fig. 1.3.



## 1.2.3 : Huygen - Fresnel Principle of Diffraction

Diffraction is defined as the bending of light around an opening or an obstacle.

Hyygen-Fresnel principle states that during diffraction every point on a wavefront is a source of secondary wavelents. These wavelents spread out in the forward direction, at the same speed as the source wave. The new wavefront, thus formed, is a line tangent to all the wavelents. This is shown in Fig. 1.4.

## 1.2.4 : Types of Diffraction

The diffraction phenomena are divided into two categories as follows :

- (i) Fresnel diffraction in which the source of light and the screen are, in general, at a finite distance from the obstacle as shown in Fig. 1.5 (a).
- (ii) Fraunhoffer diffraction in which the source of light and the screen are placed at an infinite distance from the obstacle as shown in Fig. 1.5 (b).

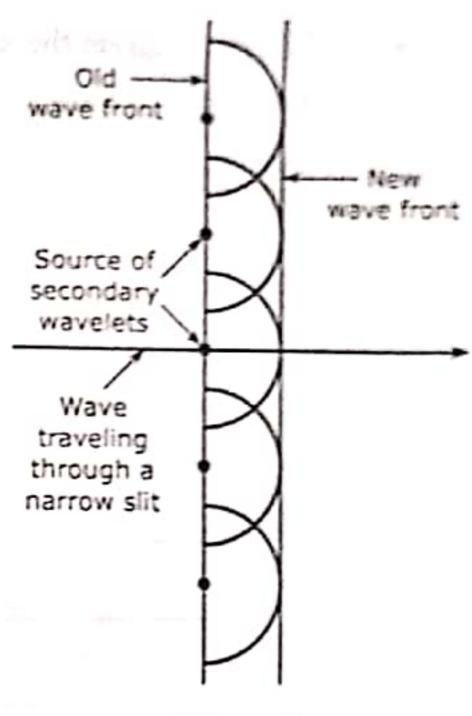
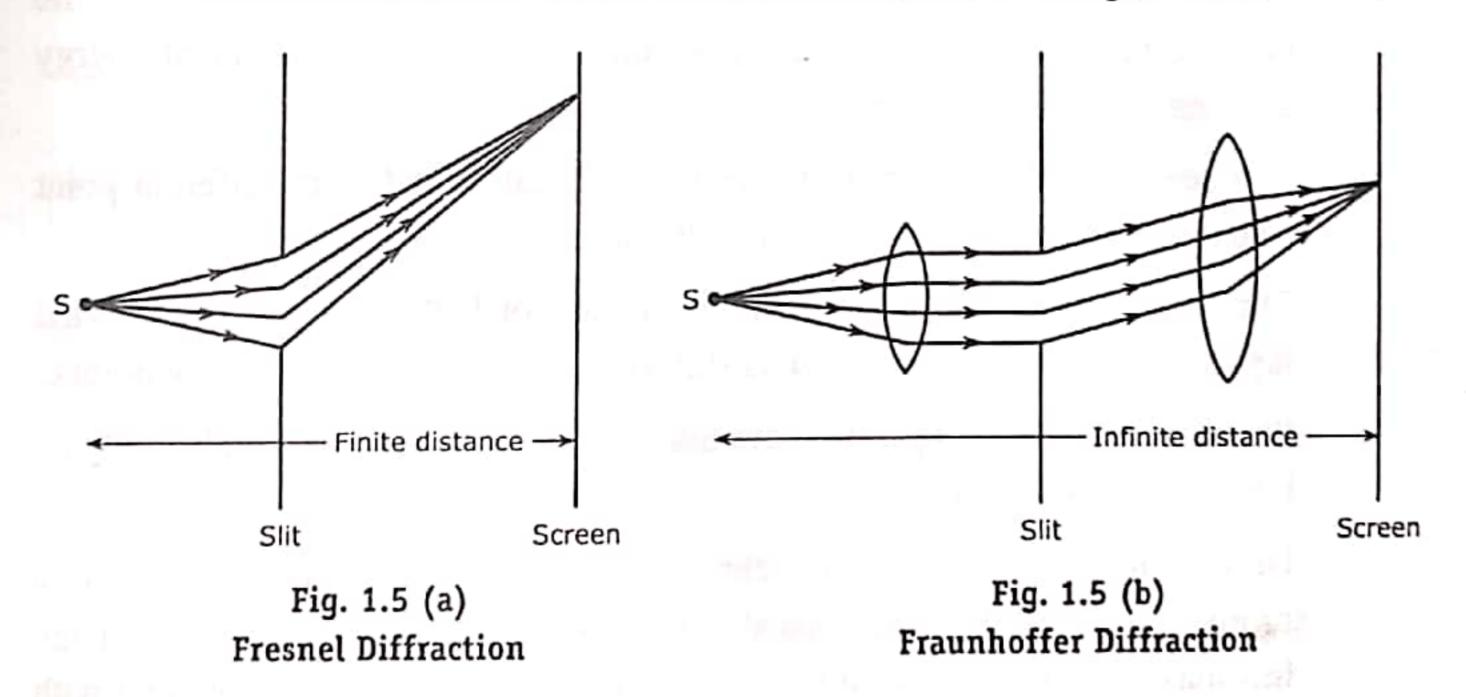




Fig. 1.4

Scanned with CamSCal

(1-5)



## Fraunhoffer Diffraction

1.3

 Consider a plane wave front (parallel beam of monochromatic rays) incident on a slit. **Engineering Physics - II** 

 Every point on the slit is a source of secondary wavelets according to Huygen principle. These wavelets interfere with the wavelets emanating from oth points, in a way, as is shown in Fig. 1.6.

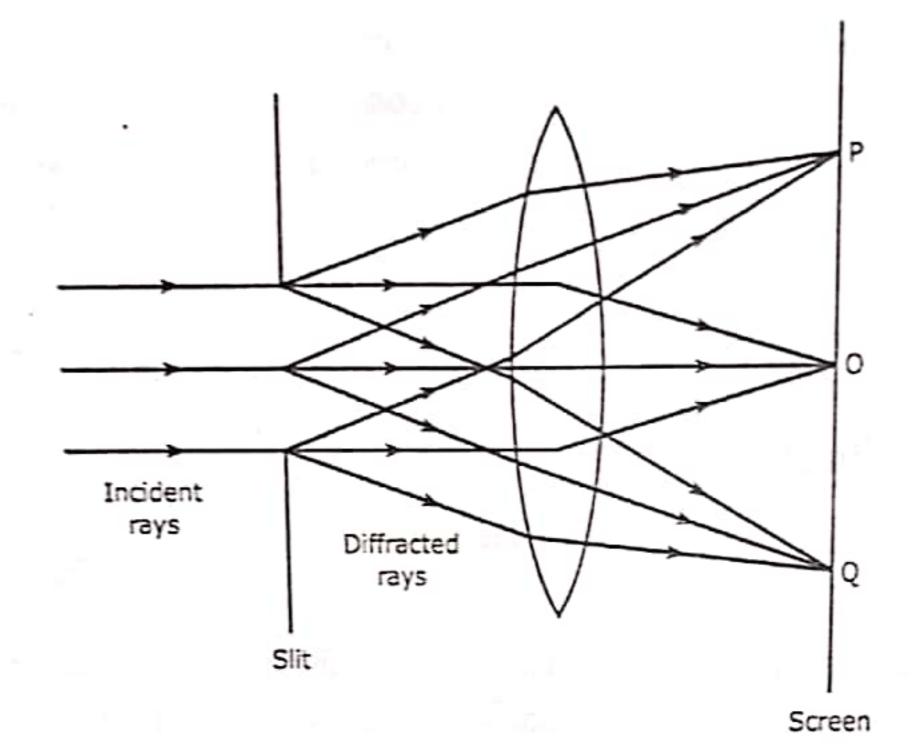



Fig. 1.6 : Fraunhoffer diffraction

(1-6)

Diffrace

- The undiffracted rays travel straight along the shortest path and interfere at the centre O of the diffraction pattern. This point receives maximum optical energy and hence it is the most intense point.
- It is seen here that a group of rays parallely diffracted from different poin sources interfere at a single point on the screen.

The sets of parallel rays which travel identically on both sides of the undeviated rays meet at two equidistant points P and Q on both sides of the central point C

- Similarly, more sets of parallel rays interfere at various points equidistantly of both sides of point O.
- Depending on the type of interference taking place the points appear as maximum or minima. At all these points a sharp image of the slit is formed. The image has maximum brightness at the centre followed by secondary maxima with intensities gradually decreasing with distance. This intensity distribution on the screen is known as the Fraunhoffer diffraction pattern which is actually the interference pattern of the diffracted waves.

## 1.3.1 : Fraunhoffer Diffraction at a Single Slit

- Consider a plane wave incident on a slit of width b.
- The slit is assumed to consist of n number of point sources of secondary wavelets. Let the point sources  $A_1$ ,  $A_2$ , ...,  $A_n$  be separated by a constant distance,  $\Delta$ .
- To study the diffraction pattern produced on the screen (on the focal plane of the lens) calculate the intensity at any arbitrary point P.

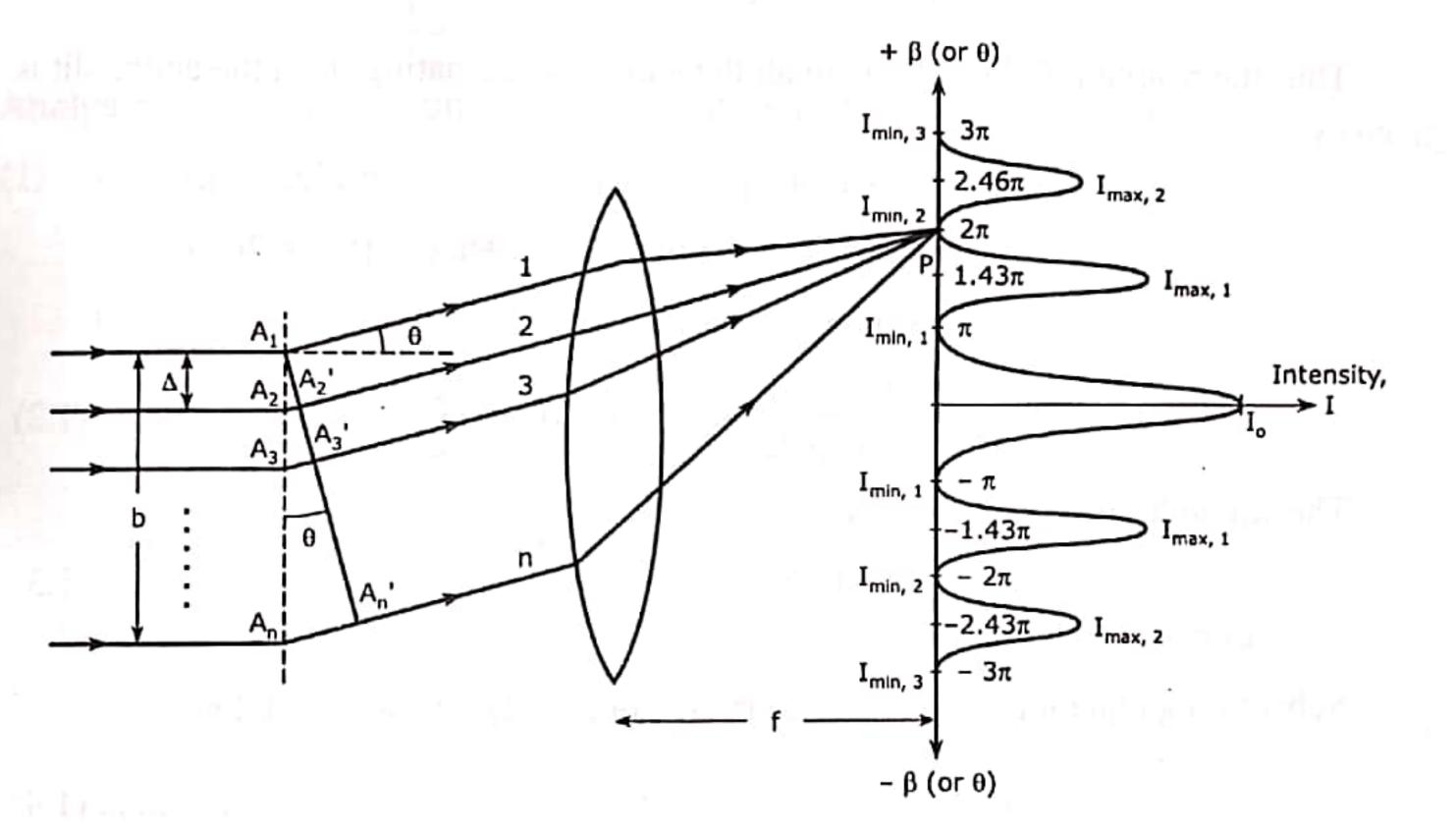



Fig. 1.7 : Fraunhoffer's Single slit diffraction

- Consider a set of parallel rays that interfere at point P and produces an intensity.
- For an incident plane wave the secondary waves emanating from points A<sub>1</sub>,
   A<sub>2</sub>, ..., A<sub>n</sub> are in phase. By dropping a perpendicular from A<sub>1</sub> to different wavelets the path differences A<sub>2</sub> A<sub>2</sub>', A<sub>3</sub> A<sub>3</sub>', ...., A<sub>n</sub> A<sub>n</sub>' can be calculated.

If  $\theta$  is the angle of diffraction, the path difference between ray 1 and ray 2 is

$$A_2 A_2' = \Delta \sin \theta$$

It is known that a path difference of  $\lambda / 2$  produces a phase difference of  $\pi$ . Hence, the path difference of  $A_2 A_2$  introduces a phase difference given by

$$\phi = \frac{2\pi}{\lambda} \Delta \sin \theta$$

..... (1.1)

Scanned with CamScar

MTD GOOD

Diffic

Thus if the wavelet which reaches point P after being emanated form point written as

 $e_1 = a \cos \omega t$ 

the wavelet emanating from A, with a phase difference of  $\phi$  is written as

 $e_2 = a \cos(\omega t + \phi)$ 

and that of the wavelet from A<sub>3</sub> is

 $e_3 = a \cos(\omega t + 2\phi)$ 

Thus the resultant field at P due to all the wavelets emanating from the entires given by

$$E = e_1 + e_2 + e_3 + \dots + e_n$$
  
=  $a \cos \omega t + a \cos (\omega t + \phi) + a \cos (\omega t + 2\phi) + \dots$   
+  $a \cos [\omega t + (n - 1)\phi]$   
=  $a \frac{\sin (n\phi/2)}{\sin (\phi/2)} \cos \left[\omega t + (n - 1)\frac{\phi}{2}\right]$  .....

The slit width can be written as

 $b = (n-1)\Delta \simeq n\Delta$ as n is very large. Substituting equation (1.1) and (1.3) in equation (1.2) it is obtained that  $E = a \frac{\sin \beta}{\sin (\beta/n)} \cos (\omega t + \beta)$  $\beta = \frac{\pi b \sin \theta}{2}$ where As n is very large,  $n \to \infty$ ,  $\frac{\beta}{n} \to 0$  and  $\lim_{(\beta/n)\to 0} \sin\left(\frac{\beta}{n}\right) = \frac{\beta}{n}$ Hence, equation (1.5) becomes  $\mathbf{E} = \mathbf{A} \frac{\sin \beta}{\beta} \cos (\omega t + \beta)$ where A = na. This is the resultant field at the point P with an amplitude,

Hence, the intensity at P is given by

 $E_A = A \frac{\sin \beta}{\beta}$ 

which is written as

## Analysis of the Diffraction Pattern : Positions of Maxima and Minima

### (1) Central maximum

This is produced by the undiffracted rays for which  $\theta = 0$ .

For  $\theta = 0$ , equation (1.5) becomes

$$\beta = \frac{\pi b \sin \theta}{\lambda} = 0$$
  
Since, 
$$\lim_{\beta \to 0} \frac{\sin \beta}{\beta} = 1$$

the intensity at the central point of the diffraction pattern is

$$I_{central} = I_0 \lim_{\beta \to 0} \frac{\sin^2 \beta}{\beta^2} = I_0 = I_{max}$$
 ......(1.11)

## (2) Secondary Maxima

As the secondary maxima are identically spaced on both sides of the central maxima

$$\frac{dI}{d\theta} = 0$$

Referring to equation (1.10) this can be written as

Using equation (1.10), here it is found that

which is true for  $\beta = 0, \pm 1.43\pi, \pm 2.46\pi, ...,$  so on.

Here,  $\beta = 0$  corresponds to the central maximum, as already shown in equation (1.11). Hence, secondary maxima are produced at angles  $\beta = \pm 1.43\pi, \pm 2.46\pi, ....$ 

## (3) Secondary Minima

The central and secondary maxima are separated by the secondary minima. At minima the intensity is zero. Hence,

$$I = I_0 \frac{\sin^2 \beta}{\beta^2} = 0$$

*i.e.*,  $\sin\beta = 0$ 

Here m = 0, *i.e.*,  $\beta$  = 0 corresponds to the central maximum. Hence, the second maxima occur at the positions for which  $\beta = \pm \pi, \pm 2\pi, \pm 3\pi, \dots$  and so on. The position of all the maxima and minima are shown in Fig. 1.7.

## 1.3.2 : Fraunhoffer Diffraction at N slits

Consider the diffraction of a plane wave by a system of N slits, each of width b. T distance between any two consecutive slits is assumed to be d. Each slit is assumed consist of n equally spaced point sources with spacing  $\Delta$ . It is already found that the fi at P due to the first slit is

林一组针的过程

Diffrac

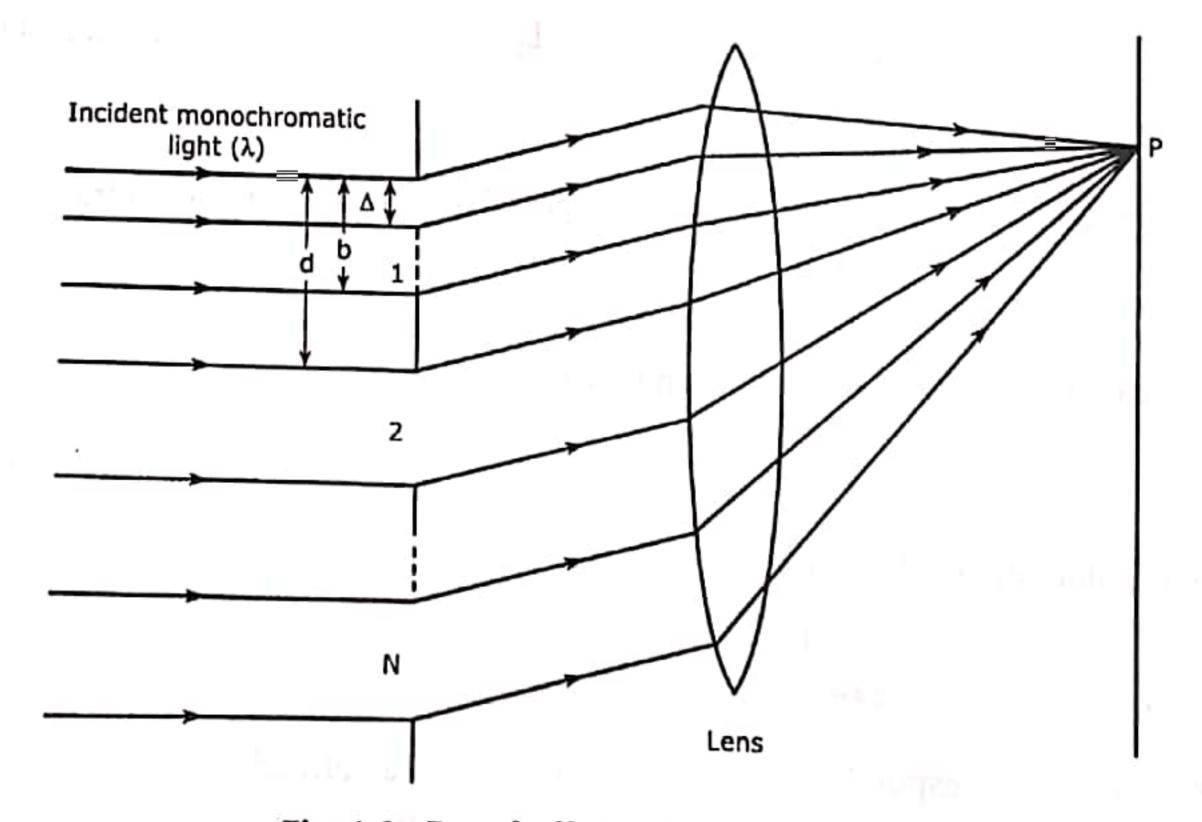



Fig. 1.8 : Fraunhoffer Diffraction at N slits

The resultant field at P due to the wavelets emanating from the system of N slits will essentially be the sum of N fields as

$$E = E_{1} + E_{2} + \dots + E_{n}$$

$$= A \frac{\sin\beta}{\beta} \cos(\omega t + \beta) + A \frac{\sin\beta}{\beta} \cos(\omega t + \beta + \psi) + \dots$$

$$\dots + A \frac{\sin\beta}{\beta} \cos[\omega t + \beta + (N - 1)\psi]$$

$$E = A \frac{\sin\beta}{\beta} \cdot \frac{\sin N\gamma}{\sin \gamma} \cos[\omega t + \beta + (N - 1)\gamma] \qquad \dots \dots (1.16)$$

The corresponding intensity distribution is

where  $I_0 \frac{\sin^2 \beta}{\beta^2}$  represents the intensity distribution produced by a single slit.

### Positions of Maxima and minima

## (1) Principal maxima

i.e.,

For N very large, a mathematical result is

$$\lim_{\gamma \to m\pi} \frac{\sin N \gamma}{\sin \gamma} = \pm N \qquad (1.18)$$

Thus, the intensity for the principal maxima is found from equation (1.17) as

$$I = N^2 I_o \frac{\sin^2 \beta}{\beta^2}$$

Hence, the condition for principal maxima is

Central principal maxima occurs for m = 0 and  $\theta = 0$  i.e.,  $\rho = 0$  and  $\beta = 0$ .

Here  $\lim_{\beta \to 0} \frac{\sin \beta}{\beta} = 1$  which gives

and who as the depression when a

La se l'anti d'in l'a

Engineering Physics - II

$$\mathbf{I} = \mathbf{N}^2 \mathbf{I}_0 = \mathbf{I}_{\max}$$

the maximum intensity observed at the central principal maximum.

The other principal maxima, which are equispaced on both sides of the cer principal maxima are observed for m = 1, 2, 3, ...

From equation (1.5) and (1.20), it can be written as

$$\beta = \frac{\pi b \sin \theta}{\lambda} = \frac{\pi b}{\lambda} \left( \frac{m \lambda}{d} \right) = \left( \frac{b}{d} \right) m \pi$$

(1-12)

Diffro

the values of  $\beta$  for which the principal maxima are observed.

From equation (1.101), it is found that

$$m \leq \frac{d}{\lambda}$$
, since  $\sin \theta \leq 1$ 

Hence, there will be a finite number of principal maxima.

#### (2) Secondary Minima

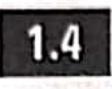
From equation (1.17) it is seen that for zero intensity

 $\sin N\gamma = 0$  for  $N\gamma = p\pi$  for  $\pi = 1, 2, 3, ...$ 

and  $\sin \beta = 0$  for  $\beta = n\pi$  for n = 1, 2, 3....

Here N  $\gamma = 0$  and  $\beta = 0$  both results into  $\theta = 0$  which corresponds to the cer principal maximum.

Hence, the condition for secondary minima is


 $d \sin \theta = \frac{p}{N} \lambda$ , p = 1, 2, 3, ......... (1.  $b \sin \theta = n \lambda$ , n = 1, 2, 3, ....and

Expanding equation (1.22), it is found that

in which d sin  $\theta = \lambda$  corresponds to the N<sup>th</sup> principal maximum whereas d sin  $\theta$ corresponds to the central principal maximum Hence, from equation (1.90), it is obvi that there are (N-1) secondary minima in between any two consecutive principal maxing

In a practical set up the diffraction pattern consists of the maxima for which condition is given by equation (1.19) as 

 $(a + b) \sin \theta = m \lambda$ known as the diffraction formula.



CONTRAC.

(1.26-1)

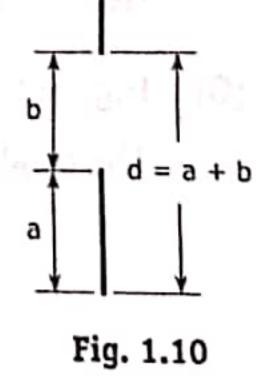
## Diffraction Grating and its Characteristics

- A diffraction grating is a very important application of diffraction. This is a series of a very large number of extremely narrow parallel slits separated by opaque spaces. There are two types of grating :
- (i) Transmission grating through which light is transmitted, and
- (ii) Reflection grating from which light is reflected.
- Transmission gratings are made by drawing very fine equispaced rulings on the surface of a very good quality glass plate using a diamond tip. The rulings act as the opaque spaces and the gaps of equal width between the rulings act as a system of slits.

This can be explained as fullows

- 1.4.1 : Different Characteristics of a Plane Transmission Grating
- (A) Grating element : (a + b)
  - If the width of each ruling is a and the width of each slit is b, the length (a + b) is called the grating element.
  - As there are very large number of lines, say N lines, there




are (N - 1) slits present on any grating. Number of lines,  $N \simeq$  number of slits (N - 1). The number of lines/cm =  $\frac{1}{a+b}$ and The number of lines /inch =  $\frac{2.54}{a+b}$ Since 1 inch = 2.54 cm.

The dimension of the grating element (a + b) is of the order of the wave length of visible light.

## (B) Missing Orders : Absent Spectra

Sometimes a few maxima disappear from the diffraction pattern. This can be explained as follows :

From equation (1.103) and (1.105), it is found that for a grating of opaque space width a, slit width b and grating element d = a + b,



When some of the maxima satisfy the condition for minima absent spe appears.

(1-14)

Diffre

..... (

Lets assume that the absent maxima satisfy equation (1.26-a). Hence, m is the of the absent maxima and n (= 1, 2, 3, ...) is the order of the regular minima. The unknown orders of the absent maxima are found by dividing equation (1.106-a) by equation (1.2 as

$$\frac{a+b}{b} = \frac{m}{n}$$
$$m = n\left(\frac{a+b}{b}\right)$$

or

This can be explained as follows :

If the slit width is same as the width of the ruling, a = b and equation ( (i) becomes

$$m = 2n$$

The regular orders of minima are n = 1, 2, 3, ...

Hence, the maxima of orders

$$m = 2, 4, 6, ....$$

will be missing from the spectrum. This means that all the even order ma remain absent in the grating spectrum.

If the width of the ruling is double the slit width a = 2b and equation ( (ii) becomes

$$m = 3n$$

Substituting the regular orders of minima, n = 1, 2, 3, ... here it is found  $m = 3, 6, 9, \dots$ 

discussions and an arrest and an arrest state

an in en 2 . Breeter Reference and History

i.e., the 3rd, 6th, 9th, ..... order maxima will remain absent in the grating spec Hence, it is found that the absent spectrum depends on the dimensions of the gra

Highest Possible Orders of Maxima in a Grating Spectrum : mmax (C) The condition for maxima is given by 

 $(a + b) \sin \Theta = m \lambda$ 

**Engineering Physics - II** 

For a given monochromatic light of wavelength  $\lambda$  incident on a given plane transmission grating of grating element (a + b),

$$(a + b) \sin \theta_{max} = m_{max} \lambda$$
$$m_{max} = \frac{a + b}{\lambda}$$

as

 $\sin \theta_{max} = 1$ 

This can be explained with a few examples, as follows :

(i) If the grating element is less than the incident wavelength *i.e.*,  $(a + b) < \lambda$ ,  $m_{max} < 1$ 

This means that only the central maximum is visible.

(ii) If the grating element is less than double the incident wavelength *i.e.*,  $(a + b) < 2\lambda$ ,

## $m_{max} < 2$

This means that the central maximum and the two first order maxima are visible. It is known that the grating element is given by

1

$$a + b = \frac{1}{No. \text{ of lines/cm}}$$
Hence, 
$$m_{max} = \frac{1}{\lambda \times No. \text{ of lines/cm}}$$
.....(1.29)

Therefore, the larger the number of rulings on the grating surface, the smaller is the number of visible orders in the grating spectrum



## **Resolving Power of a Diffraction Grating**

When two objects are placed very close to each other or kept at a large distance human eye cannot distinguish them. Telescopes or microscopes are required to be used to view them. These optical instruments receive the rays diffracted by these objects and produce the corresponding diffraction patterns consisting of various maxima and minima. The objects can be viewed distinctively if their diffraction patterns are distinguishable. The ability of an optical instrument to produce just separate diffraction patterns of two close objects is called its *resolving power*. **Engineering Physics - II** 

### (1-16)

Ditt

## 1.5.1 : Rayleigh's Criteria of Resolution

Two close spaced point sources of light are said to be just resolved by an  $_{0}$  instrument only if the first principal maximum of the diffraction pattern due to one s coincides with the first minimum of the diffraction pattern due to the other source, a in Fig. 1.11.

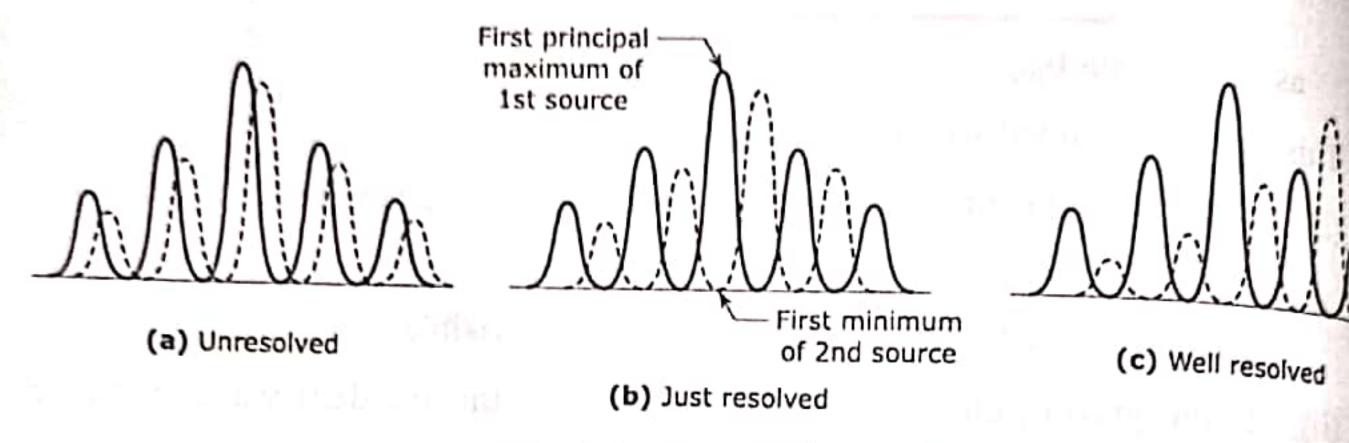



Fig. 1.11 : Rayleigh's Criteria

## 1.5.2 : Resolving Power of a Grating

To determine the resolving power of a grating consider a beam of light contact two wavelengths  $\lambda$  and  $\lambda + d\lambda$  very close to each other, incident on the grating surface to each other.

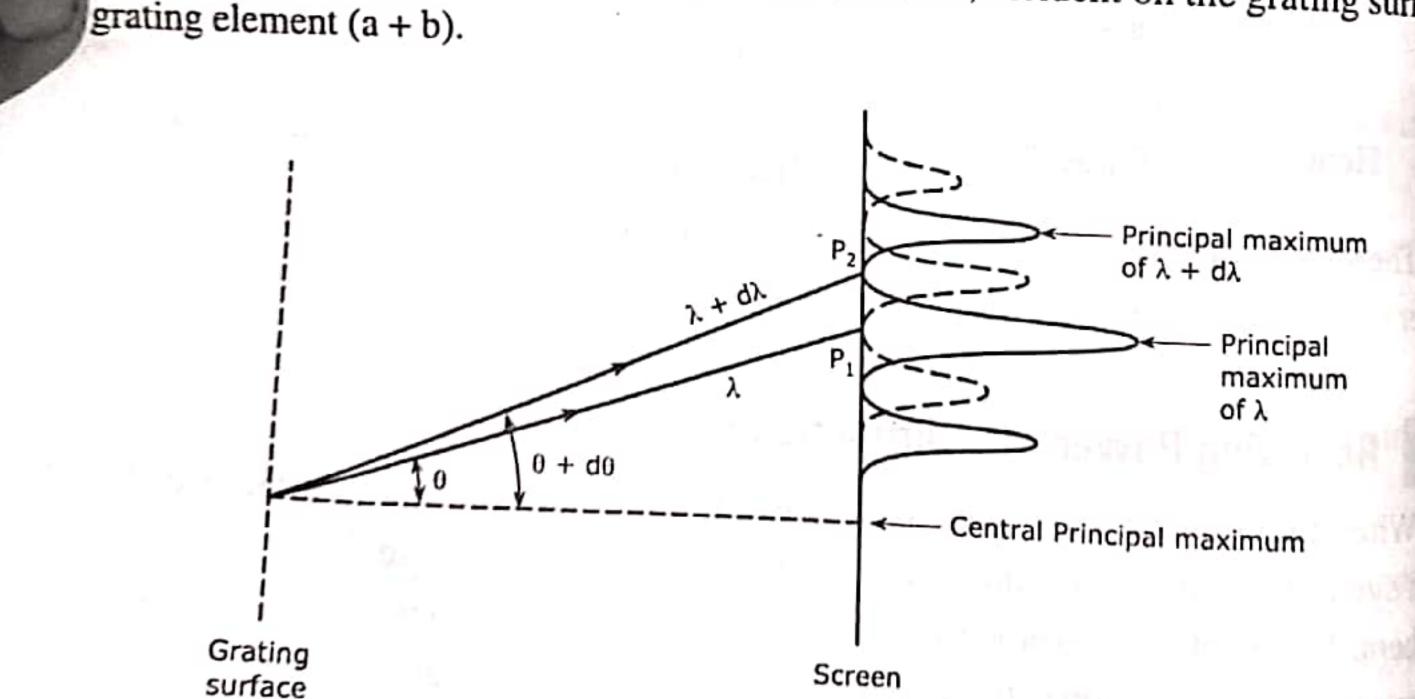



Fig. 1.12 : Resolving power of a grating

As seen in Fig. 1.12, the wavelength  $\lambda$  after being diffracted through an any strikes the screen at point P<sub>1</sub> where the first principal maximum of its spectrum approximation of the spectrum of the spectrum approximation of the spectrum approxi

The wavelength  $\lambda + d\lambda$  is diffracted through an angle  $\theta + d\theta$  and strikes the screen at point P2 where its first principal maxima is produced (shown with dotted curve).

According to Rayleigh's criteria if the two waves of wavelengths  $\lambda$  and  $\lambda + d\lambda$  are to be resolved by the grating, at point  $P_2$ , the first minimum due to  $\lambda$  should coincide with first principal maximum of  $\lambda + d\lambda$ .

The conditions for the m<sup>th</sup> order maxima for the waves of wavelengths  $\lambda$  and  $\lambda + d\lambda$ which are diffracted through  $\theta$  and  $\theta + d\theta$  respectively are given by,

$$(a + b) \sin \theta = m \lambda$$
 and ......(1.30)  
 $(a + b) \sin (\theta + d\theta) = m (\lambda + d\lambda)$  ......(1.31)

The distance between the central maxima due to wavelengths  $\lambda$  and  $\lambda + d\lambda$  is given by

$$P_1 P_2 = (a + b) \sin (\theta + d\theta) - (a + b) \sin \theta$$
  
= m (\lambda + d\lambda) - m \lambda  
$$P_1 P_2 = m d\lambda \qquad ....................(1.32)$$

On the other hand, P<sub>1</sub>P<sub>2</sub> is the distance between the central maximum and the first minimum in the spectrum of the wave of wavelength  $\lambda$ .

From equation (1.22) the condition for minima is given by

$$(a + b) \sin \theta = \frac{p}{N} \lambda, \qquad p = 1, 2, 3, ....$$

which when expanded becomes

$$(a + b) \sin \theta = \frac{\lambda}{N}, \frac{2\lambda}{N}, \dots$$

where  $(a + b) \sin \theta = 0$ 

corresponds to the central maximum.

From equations (1.33) and (1.34), it is understood that from the central maximum, the first minimum occurs at a distance  $\lambda / N$ , the second minimum occurs at distance  $2\lambda$  / N, and so on.

Here P<sub>1</sub>P<sub>2</sub> is the distance between the central maximum and the first minimum in the spectrum of  $\lambda$ .

 $P_1 P_2 = m d \lambda = \frac{\lambda}{N}$  ......(1.35)

..... (1.34)

..... (1.33)

**Engineering Physics - II** 

The resoling power of a grating.

$$R.P. = \frac{\lambda}{d\lambda} = mN$$

is defined as the ratio of the wavelength of any spectral line (say,  $\lambda$  of wavelength); difference in the wavelength (d $\lambda$ ) between the former and the neighboring line (say,  $\lambda + d\lambda$ ) such that the two lines appear to be just resolved.

(1 - 18)

Here, N is the minimum number of lines required on the grating surface to resolve the wavelengths  $\lambda$  and  $\lambda + d\lambda$ .

From equation (1.36) it is obvious that by increasing the number of rulings or grating surface the resolving power can be improved.

## 1.5.3 : Polychromatic Grating Spectra

- Consider a plane transmission grating illuminated by a beam of white light conta seven wavelengths ranging from violet to red.
- Every wavelength will exhibit a separate diffraction spectrum containing the ce principal maximum and higher order principal maxima with gradually decreintensities on its both sides.
  - As the dispersive power of a grating is given by  $\frac{d\theta}{d\lambda}$ , the larger the wavelength more is the dispersion.

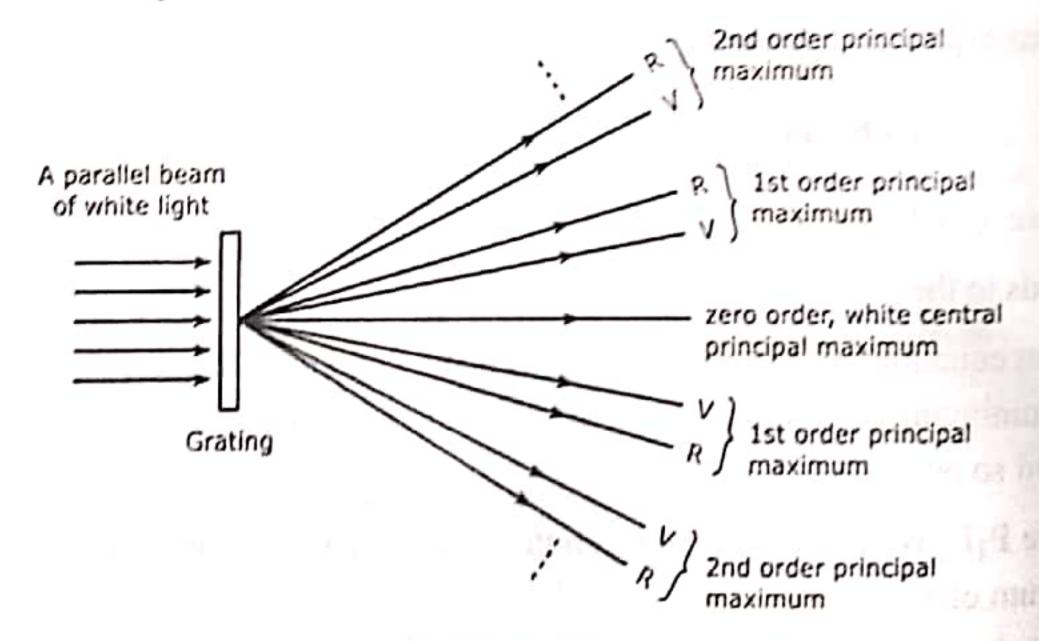



Fig. 1.13 : Polychromatic Grating Spectra

Scanned With Cam

Hence, every principal maxima will appear to split into seven different color according to their  $\lambda$  values as shown in Fig. 1.13.

- The individual grating spectrum of each colour consists of a central principal maximum. Hence, at the central principal maxima all the colours overlap producing a white spot.
- In the diffraction spectrum a central white spot is found with coloured bands (ranging from violet to red outwards) equally spaced on its both sides with gradually diminishing intensities.

## 1.6 Application of Diffraction Grating : Determination of Unknown Wavelength of Light by Diffraction Grating

Diffraction grating has wide use in determination the wavelength of light by using a spectrometer in Laboratory.

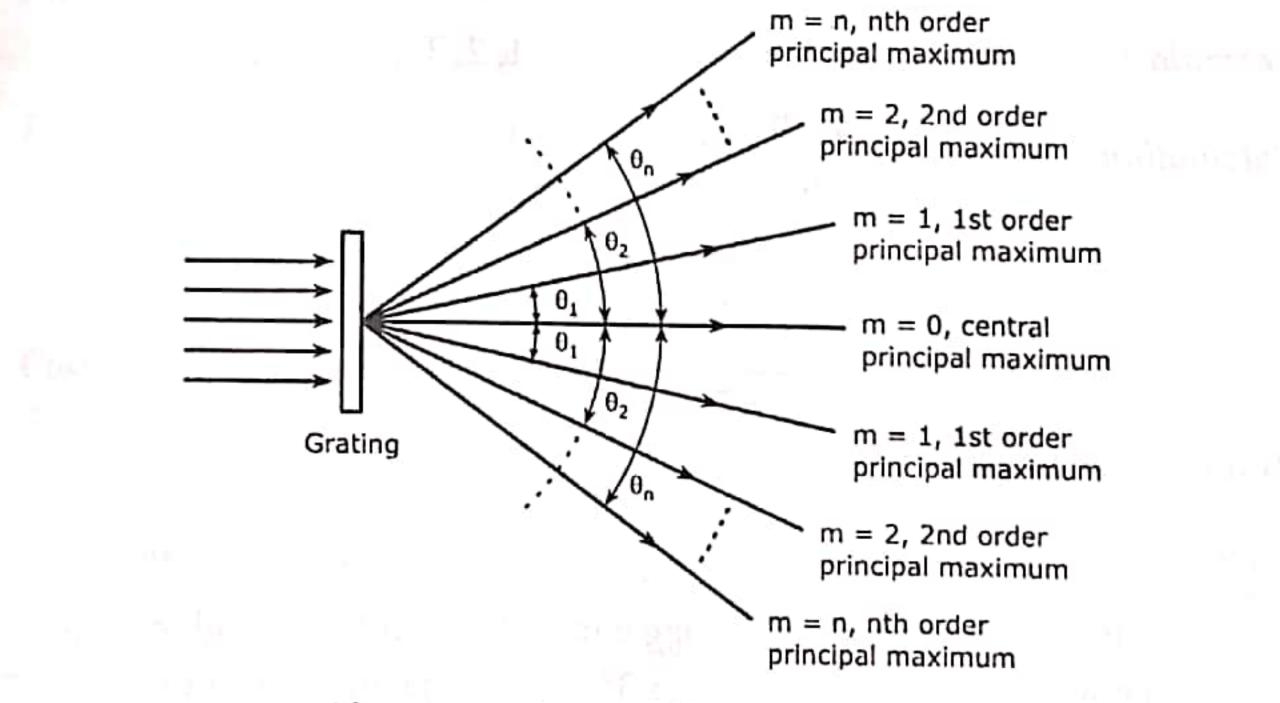



Fig. 1.14 : Polychromatic grating spectra

As seen in Fig. 1.14 a parallel beam of monochromatic light of wavelength is made o fall on the grating surface of grating element (a + b). The diffraction pattern is formed on the screen, consisting of the central principal maximum and higher order principal naxima with gradually decreasing intensity on its both sides.

The telescope of the spectrometer is adjusted to view the central principal maximum m = 0). Then the telescope is rotated through an angle  $2\theta_1$  to view the two first order orincipal maxima on either side of the central spot. For first order diffraction maxima, it is written as

$$(a + b) \sin \theta_1 = \lambda$$

Diffice

Knowing the grating element (a + b),  $\lambda$  can be determined. The same method can be used for any order of diffraction.

## 1.7 Solved Problems

## Problem 1

A parallel beam of monochromatic light is incident on a plane transmission gra having 3000 lines/cm. A third order diffraction is observed at 30°. Calculate the waveler of the line. (M.U. May 2007; Dec. 2006) (

## Solution :

Data:  

$$a + b = \frac{1}{3000} \text{ cm}, n = 3, \theta = 30^{\circ}.$$
Formula:  

$$(a + b) \sin \theta = n \lambda, \quad n = 1, 2, 3, \dots$$
Calculation:  

$$\lambda = \frac{a + b}{n} \sin \theta$$

$$= \frac{1}{2000} \times \sin 30^{\circ}$$

$$= \frac{1}{9000 \times 2} = 5.555 \times 10^{-5} \text{ cm}$$

**Result :** Wavelength =  $5555 \text{ A}^{\circ}$ .

### Problem 2

In a plane transmission grating, the angle of diffraction for second order print maximum for the wavelength  $5 \times 10^{-5}$  cm is  $35^{\circ}$ . Calculate the number of lines / cm the grating surface. (M.U. May 2013, 17) (

Solution :

Data: 
$$\theta = 35^{\circ}, \ \lambda = 5 \times 10^{-5} \text{ cm}, \ n = 2.$$
  
Formula:  $(a + b) \sin \theta = n \lambda, \quad n = 1, 2, 3, ...,$   
 $a + b \equiv \frac{1}{\text{No. of lines/cm}}$   
Calculation:  $(a + b) = \frac{n \lambda}{\sin \theta}$ 

$$(a + b) = \frac{2 \times 5 \times 10^{-5}}{\sin 35^{\circ}} = 17.43 \times 10^{-5} \text{ cm}$$
  
No. of lines/cm =  $\frac{1}{17.43 \times 10^{-5}} = 5737$ 

Result : No. of lines/cm = 5737.

Monochromatic light of wavelength 6560 A° falls normally on a grating 2 cm wide. The first order spectrum is produced at an angle of 18°14' from the normal. Calculate the total numbers of lines on the grating. (M.U. May 2013, 18) (5 m)

Solution :

Problem 3

Data :  $\lambda = 6560 \text{ A}^\circ = 6560 \times 10^{-8} \text{ cm},$  $\theta = 18^{\circ} 14' = 18.84^{\circ}$ , width = 2 cm, n = 1. Formula :  $(a + b) \sin \theta = n \lambda$ , n = 1, 2, 3, ....a+b = No. of lines / cm Calculation:  $(a + b) = \frac{n\lambda}{\sin\theta} = \frac{6560 \times 10^{-8}}{\sin 18.84^{\circ}}$ sin 18.84°  $= 2.03 \times 10^{-4}$  cm. No. o f lines/cm =  $\frac{1}{a+b} = \frac{1}{2.03 \times 10^{-4}} = 4926$ Total No. of lines =  $4926 \times 2 = 9852$ **Result :** Total No. of lines on the grating surface = 9852.

## Problem 4

In plane transmission grating the angle of diffraction for the second order principal maxima for the wavelength  $5 \times 10^{-5}$  cm is 35°. Calculate the number of lines/cm on the diffraction grating. LURING THE FLORE AND A (M.U. Nov. 2016) (5 m)

Formed a shifter and the set and

Solution :

 $\lambda = 5 \times 10^{-5}$  cm,  $\theta = 35^{\circ}$ , n = 2. Data : Formula ;  $(a + b) \sin \theta = n \lambda, \quad n = 1, 2, 3, ....$  **Engineering Physics - II** 

(1-22)

Diffro

 $\frac{1}{a+b} = \text{Number of lines/cm}$ Calculation:  $a+b = \frac{n\lambda}{\sin\theta} = \frac{2 \times 5 \times 10^{-5}}{\sin 35^{\circ}}$  $= 1.74 \times 10^{-4}$ Number of lines/cm  $= \frac{1}{a+b} = \frac{1}{1.74 \times 10^{-4}} = 5735$ Result: Number of lines/cm = 5735

### Problem 5

In a phase transmission grating the angle of diffraction for the first order prin maximum is 20° for a wavelength of 6500 A°. Calculate the number of lines in one the grating surface. (M.U. Dec. 2019)

Solution :

**Data**: n = 1,  $\theta = 20^{\circ}$ ,  $\lambda = 6500 \text{ A}^{\circ} = 6.5 \times 10^{-5} \text{ cm.}$ **Formula**:  $(a + b) \sin \theta = n \lambda$ , n = 1, 2, 3, ....

$$a + b = \frac{1}{No. \text{ of lines / cm}}$$
  
*Calculation*:  $(a + b) = \frac{h\lambda}{\sin\theta} = \frac{1 \times 6.5 \times 10^{-5}}{\sin 20^{\circ}}$   
 $= 19.0047 \times 10^{-5}$   
No. of lines / cm  $= \frac{1}{a + b} = \frac{1}{19.0047 \times 10^{-5}} = 5261$ 

**Result :** Number of lines in one cm = 5261.

## Problem 6

A monochromatic light of wavelength  $5 \times 10^{-5}$  cm falls normally on a grating, wide. The first order maxima is produced at 18° from the normal. What are the total nut of lines on the grating? (M.U. Dec. 2019)

Solution :

**Data** : n = 1,  $\theta = 18^{\circ}$ ,  $\lambda = 5 \times 10^{-5}$  cm, width = 2 cm. **Formula** :  $(a + b) \sin \theta = n \lambda$ , n = 1, 2, 3, ...

$$a + b = \frac{1}{\text{No. of lines/cm}}$$
  
Calculation:  $(a + b) = \frac{h\lambda}{\sin\theta} = \frac{1 \times 5 \times 10^{-5}}{\sin 18^{\circ}}$   
 $= 1.618 \times 10^{-4} \text{ cm}$   
No. of lines / cm  $= \frac{1}{a + b} = \frac{1}{1.618 \times 10^{-4}} = 6180$ 

Total no. of lines on the grating surface

 $= 6180 \times 2 = 12360$ 

**Result :** Number of lines in one cm = 12360.

### Problem 7

Calculate the highest order spectrum that can be obtained by a monochromatic light of wavelength 6000 A° by a grating with 6000 lines/cm.

### Solution :

Data :  $\lambda = 6000 \text{ A}^\circ = 6000 \times 10^{-8} \text{ cm},$ No. of lines/cm = 6000.

Formula:  $(a + b) \sin \theta = n \lambda, \quad n = 1, 2, 3, ....$   $a + b = \frac{1}{\text{No. of lines/cm}}$ Calculation: For given (a + b) and  $\lambda$  $\sin \theta \propto n$   $(a + b) \sin \theta_{\text{max}} = n_{\text{max}} \lambda$   $\sin \theta_{\text{max}} = 1$   $(a + b) = n_{\text{max}} \lambda$   $n_{\text{max}} = \frac{a + b}{\lambda} = \frac{1}{6000 \times 6000 \times 10^{-8}}$   $\therefore \quad n_{\text{max}} = 2.7$ As  $n_{\text{max}} = 2.7$ As  $n_{\text{max}} = 2.7$ Result : As  $n_{\text{max}} = 2$ . Problem 8

A plane transmission grating having 6000 lines/cm is used to obtain a spectrum light from a sodium lamp in the second order. Calculate the angular separation betw the two sodium lines whose wavelengths are 5890 A° and 5896 A°.

(M.U. Dec. 2016) (7

#### Solution :

 $a + b = \frac{1}{6000}$  cm, n = 2,  $\lambda_1 = 5890$  A°,  $\lambda_2 = 5896$  A°. Data : Formula :  $(a+b)\sin\theta = n\lambda$ **Calculation**:  $(a + b) \sin \theta_1 = n \lambda_1$  $\theta_1 = \sin^{-1}\left(\frac{n\lambda_1}{a+b}\right)$  $\theta_1 = \sin^{-1} (2 \times 5890 \times 10^{-8} \times 6000)$  $\theta_1 = \sin^{-1}(0.7068) = 44.97^{\circ}$  $\theta_2 = \sin^{-1}\left(\frac{n\lambda_2}{a+b}\right)$  $\theta_2 = \sin^{-1} (2 \times 5896 \times 10^{-8} \times 6000)$  $\theta_2 = \sin^{-1}(0.7075) = 45.03^{\circ}$  $\theta_2 - \theta_1 = 45.03^\circ - 44.97^\circ = 0.06^\circ$ 

Result : Angular separation = 0.06°

#### Problem 9

A plane transmission grating having 6000 lines / cm is used to obtain a spectrum of light from a sodium lamp in the second order. Calculate the angular separation between the two sodium lines whose wavelengths are 5890 A° and 5896 A°.

21 - 8 - Cev

(M.U. Dec. 2007) (7 m)

Formula :

and

*.*..

#### Problem 10

Solution :

Data :

### Solution :

Data :

a + b = 
$$\frac{1}{6000}$$
 cm, n = 2,  
 $\lambda_1 = 5890 \text{ A}^\circ = 5890 \times 10^{-8}$  cm,  
 $\lambda_2 = 5896 \text{ A}^\circ = 5896 \times 10^{-8}$  cm.

 $(a + b) \sin \theta = n \lambda, \quad n = 1, 2, 3, ....$ Calculation :  $(a + b) \sin \theta_1 = n \lambda_1 = \lambda_1$  $(a + b) \sin \theta_2 = n \lambda_2 = \lambda_2$  $\sin \theta_1 = \frac{\lambda_1}{a+b}$  $\therefore \qquad \theta_1 = \sin^{-1}\left(\frac{\lambda_1}{a+b}\right)$  $= \sin^{-1} (5890 \times 10^{-8} \times 6000) = 20.69^{\circ}$  $\sin \theta_2 = \frac{\lambda_2}{a+b}$  $\theta_2 = \sin^{-1}\left(\frac{\lambda_2}{a+b}\right)$  $= \sin^{-1} (5896 \times 10^{-8} \times 6000) = 20.71^{\circ}$  $\theta_2 - \theta_1 = 20.71^\circ - 20.69^\circ$ 

$$= 0.02^{\circ} = 1.2'$$

Result : Angular separation = 0.02° = 1.2'.

The visible spectrum ranges from 4000 A° to 7000 A°. Find the angular breadth of the first order visible spectrum produced by a plane grating having 6000 lines / cm when light is incident normally on the grating. (M.U. Dec. 2015, 19) (5 m)

HULL = Banda + st

1 (2 + 5)

$$\lambda_1 = 4000 \text{ A}^\circ = 4 \times 10^{-5} \text{ cm},$$
  
 $\lambda_2 = 7000 \text{ A}^\circ = 7 \times 10^{-5} \text{ cm}, n = 1,$   
 $a + b = \frac{1}{6000 \text{ lines/ cm}}.$ 

Formula :  $(a + b) \sin \theta = n \lambda$ , n = 1, 2, 3, ..... Calculation :

BL - UG-2+F - 35

 $(a + b) \sin \theta_1 = \lambda_1$ 

(1-26)

 $\theta_1 = \sin^{-1}\left(\frac{\lambda_1}{a+b}\right)$  $= \sin^{-1} (4 \times 10^{-5} \times 6000)$  $= \sin^{-1}(0.24) = 13.88^{\circ}$ 

 $(a+b)\sin\theta_2 = \lambda_2$ 

$$\theta_2 = \sin^{-1} \left( \frac{\lambda_2}{a+b} \right)$$
  
=  $\sin^{-1} (7 \times 10^{-5} \times 6000)$   
=  $\sin^{-1} (0.42) = 24.83^{\circ}$ 

$$\theta_2 - \theta_1 = 24.83^\circ - 13.88^\circ = 10.95^\circ$$

Result : Angular separation = 10.95°.

#### Problem 11

Engineering Physics - II

A diffraction grating used at normal incidence gives a line 5400 A° in certain ord perimposed on another line 4050 A° of the next higher order. If the angle of diffraction (M.U. May 2010; Nov. 2012) (5) 80°, how many lines / cm are there on the grating?

#### 6lution :

Data :

...

 $\lambda_1 = 5400 \text{ A}^\circ = 5400 \times 10^{-8} \text{ cm},$  $\lambda_2 = 4050 \text{ A}^\circ = 4050 \times 10^{-8} \text{ cm}, \quad \theta = 30^\circ.$ 

 $(a + b) \sin \theta = n \lambda$ , n = 1, 2, 3, ....Formula :

Calculation :

$$(a + b) \sin \theta = n \lambda_{1} 
(a + b) \sin \lambda = (n + 1) \lambda_{2} 
n \lambda_{1} = (n + 1) \lambda_{2} 
n = \frac{\lambda_{2}}{\lambda_{1} - \lambda_{2}} 
n = \frac{4050 \times 10^{-8}}{(5400 - 4050) \times 10^{-8}} = 3$$

$$(a + b) \sin \theta = n \lambda_{1}$$

$$(a + b) = \frac{n \lambda_{1}}{\lambda_{1}} = \frac{3 \times 5400 \times 10^{-8}}{10^{-8}}$$

Engineering Physics - II

Diffroc

Y LT THE WIE

Problem 12 How many orders will be observed by a grating having 4000 lines / cm if it is illuminated by a light of wavelength in the range 5000 A° to 7500 A°.

- 100 Oct + 107 Se

Solution :

Data

Form For

For  $\lambda$ 

For  $\lambda$ 

Result : For the wavelength range of 5000 A° to 7500 A°, three orders will be observed rd, the 4<sup>th</sup> and the 5<sup>th</sup> orders. to a Plate Chart

a+b 1

n an experiment with grating, third order spectral line of some wavelength coincides he fourth order spectral line of wavelength 4992 A°. Calculate the value of the ength. (M.U. Dec. 2011) (7 m) on :

Hab south it

Data :

WE HERE THE AVER A

$$(a + b) = 3.24 \times 10^{-4}$$

No. of lines / cm =  $\frac{1}{a+b}$  = 3086

Result : No. of lines / cm = 3086.

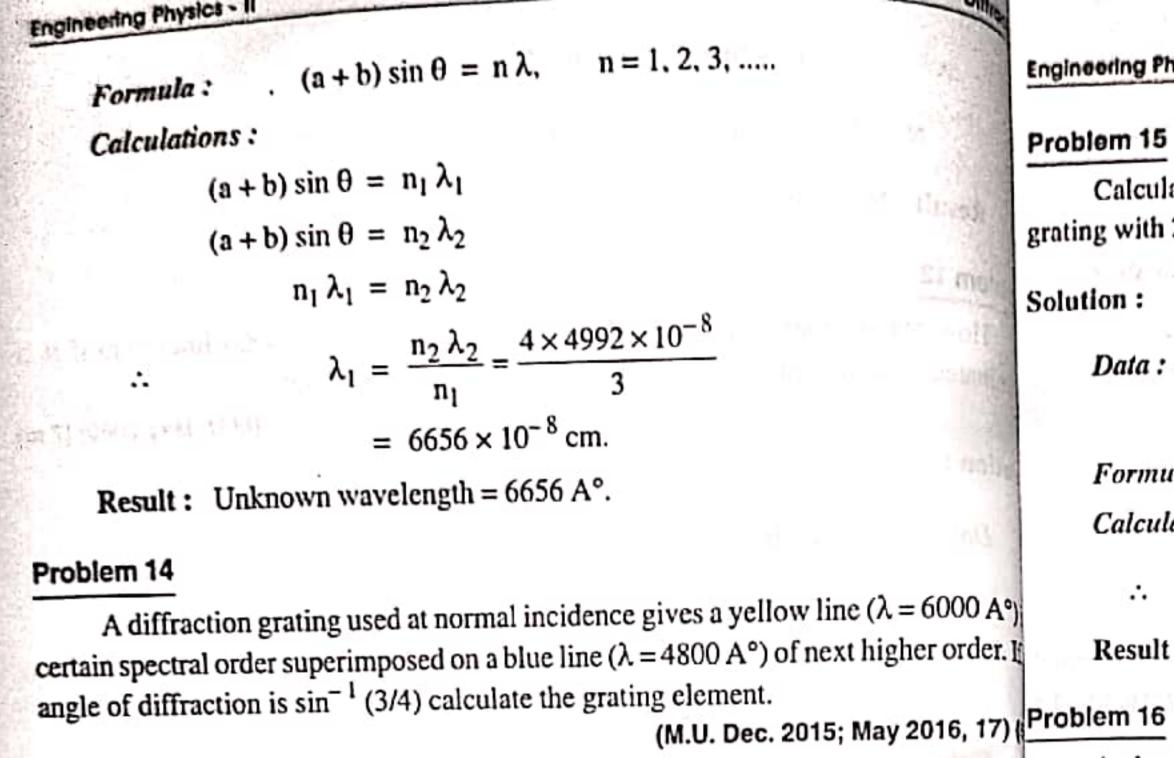
(M.U. May 2009) (7 m)

: 
$$a + b = \frac{1}{4000}$$
 cm.  
 $\lambda_1 = 5000 \text{ A}^\circ = 5000 \times 10^{-8}$  cm,  
 $\lambda_2 = 7500 \text{ A}^\circ = 7500 \times 10^{-8}$  cm.  
(a + b) sin  $\theta = n \lambda$ ,  $n = 1, 2, 3, .$ 

Calculations :

$$n = n_{max}$$
,  $\sin \theta = 1$ ,  $(a + b) = n_{max} \cdot \lambda$ 

$$n_{\text{max}} = \frac{1}{\lambda_1} = \frac{1}{4000 \times 5000 \times 10^{-8}} = 5$$


$$n_{\text{max}} = \frac{a+b}{\lambda_2} = \frac{1}{4000 \times 7500 \times 10^{-8}} = 3.3 = 3$$

Orders observed are from n = 3 to n = 5.

#### em 13

Let the unknown wavelength be  $\lambda_1$ .  $n_1 = 3$  for  $\lambda_1$ ,  $n_2 = 4$  for  $\lambda_2 = 4992$  A°.

$$\lambda_2 = 4992 \times 10^{-8} \text{ cm}$$



Solution :

Data :

...

 $\lambda_1 = 6000 \text{ A}^\circ = 6 \times 10^{-5} \text{ cm}.$  $\lambda_2 = 4800 \text{ A}^\circ = 4.8 \times 10^{-5} \text{ cm}.$  $\theta = \sin^{-1} (3/4).$ 

 $(a + b) \sin \theta = n \lambda$ , n = 1, 2, 3, ....Formula :

**Calculation :** For given (a + b) and  $\theta$ ,  $n \propto \frac{1}{2}$ .

$$(a+b)\sin\theta = n\lambda_1$$

$$(n + b) \sin \theta = (n + 1) \lambda_2$$
  
 $n \lambda_1 = (n + 1) \lambda_2$ 

$$n = \frac{\lambda_2}{\lambda_1 - \lambda_2} = \frac{4.8 \times 10^{-5}}{(6 - 4.8) \times 10^{-5}} = 4$$

$$a + b = \frac{n\lambda_1}{\sin\theta} = \frac{4 \times 6 \times 10^{-5}}{(3/4)} = 32 \times 10^{-5} \text{ cm.}$$

**Result :** Grating element =  $32 \times 10^{-5}$  cm.

Dat

(i)

...

Calculate the maximum order of diffraction maxima seen from plane transmission grating with 2500 lines per inch if light of wavelength 6900 A° falls normally on it.

The second is a first in the

(M.U. Dec. 2017) (5 m)

S. Darts A.

TOTAL STREET

Contraction of

1 3 1 2 M 10

percipited

*ta*: 
$$N = \frac{1}{a+b} = 2500 \text{ lines / inch} = 2500 \times 2.52 \times 10^{-2} = 63 \text{ lines / m}$$
  
 $\lambda = 6900 \text{ A}^\circ = 6900 \times 10^{-10} \text{ m}.$ 

3

The I ALL I A THE THE A DECT SHE HERE

mula: 
$$(a + b) \sin \theta = n \lambda$$

Calculation: For  $n = n_{max}$ ,  $\sin \theta = 1$ 

·••

$$n_{max} = \frac{a+b}{\lambda} = 2$$

**Result**:

$$n_{max} = \frac{1}{\lambda} = 2.3$$
  
 $n_{max} = 2.$ 

(a)

A plane transmission grating has 5000 lines / cm.

- Determine the highest order of spectrum observed if incident light has  $\lambda = 6000 \text{ A}^{\circ}$ .
- If the opaque spaces between the slits are exactly double the transparent space (b) and the maximum order observed is three, find which order of spectra will be absent.

THAT I DO JEAN

. 3. .....

IL A INDER = "A ANDRE" S

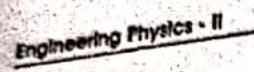
#### Solution :

*ta*: (i) 
$$\lambda = 6000 \text{ A}^\circ = 6000 \times 10^{-8} \text{ cm., a} + b = \frac{1}{5000} \text{ cm}$$

(ii) 
$$a = 2b$$
,  $n_{max} = 3$ .

Formul

$$la: (a+b)\sin\theta = n\lambda, \quad n=1,2$$


#### Calculation :

$$(a + b) \sin \theta_{max} = n_{max} \cdot \lambda$$

$$n_{max} = \frac{a + b}{\lambda} = \frac{1}{5000 \times 6000 \times 10^{-8}}$$

$$n_{max} = 3.33 \approx 3$$

#### Scanned with Came



| (a + b) $\sin \theta =$ | nλ : maxima                             |
|-------------------------|-----------------------------------------|
| $b \sin \theta =$       |                                         |
| $\frac{a+b}{b} =$       | m<br>n                                  |
| m =                     | $\frac{a+b}{b}n = \frac{2b+b}{b}n = 3n$ |
| m =                     | 3, 6, 9,                                |

Since  $n_{max} = 3$ , absent order = 3 only.

**Result :** (i) Maximum visible order,  $n_{max} = 3$ 

(ii) Absent order, m<sub>max</sub> = 3.

#### Problem 17

A grating has 620 rulings/mm and is 0.5 mm wide. What is the smallest wavelens interval that can be resolved in the third order at  $\lambda = 481 \text{ nm}?$  (M.U. May 2016, 17) Solution :

**Data:**  $N = 620 \times 0.5 = 310$ ,  $\lambda = 481 \times 10^{-9}$  m, m = 3.  $\frac{\lambda}{d\lambda} = mN$ Formula : **Calculations:**  $d\lambda = \frac{\lambda}{mN} = \frac{481 \times 10^{-9}}{3 \times 310} = 0.5172 \times 10^{-9} m$ **Result**:  $d\lambda = 0.5172 \, \text{A}^\circ$ 

#### Problem 18

Light is incident on a grating of 0.5 cm width with 3000 lines. (i) Find angu separation in 2nd order of two sodium lines 5890 A° and 5896 A°. (ii) Check whether the two lines are resolved in 2<sup>nd</sup> order or not. (M.U. Dec. 2010) (6)

Solution :

Data : Width of grating = 0.5 cm, n = 2, Total No. of lines on the grating = 3000,  $\lambda_1 = 5890 \text{ A}^\circ = 5890 \times 10^{-8} \text{ cm},$  $\lambda_2 = 5896 \text{ A}^\circ = 5896 \times 10^{-8} \text{ cm}.$ 

Engineering Physics - II  $(a + b) \sin \theta = n \lambda, \quad n = 1, 2, 3, ....$ Formula :  $R.P. = mN = \frac{\lambda}{d\lambda}$ 

Calculations :

...

(ii)

The number of lines on the grating 1 cm required to resolve  $\lambda_1$  and  $\lambda_2$  is

÷

order.

TANKS - U - TO

王子子的学习

No. of lines / cm on the grating =  $\frac{3000}{0.5} = 6000$ 

$$a + b = \frac{1}{6000} = 1.667 \times 10^{-4} \text{ cm}$$

 $(a + b) \sin \theta_1 = 2 \lambda_1$ 

$$\theta_{1} = \sin^{-1}\left(\frac{2\lambda_{1}}{a+b}\right) = \sin^{-1}\left(\frac{2 \times 5890 \times 10^{-8}}{1.667 \times 10^{-4}}\right)$$

$$\theta_1 = 44.96^{\circ}$$

 $(a + b) \sin \theta_2 = 2\lambda_2$ 

$$\theta_2 = \sin^{-1} \left( \frac{2\lambda_1}{a+b} \right) = \sin^{-1} \left( \frac{2 \times 5896 \times 10^{-8}}{1.667 \times 10^{-4}} \right)$$
$$\theta_1 = 45.03^{\circ}$$

$$\theta_2 - \theta_1 = 45.03^\circ - 44.96^\circ = 0.07^\circ$$

$$\lambda = \frac{\lambda_1 + \lambda_2}{2} = 5893 \times 10^{-5} \,\mathrm{cm}$$

$$d\lambda = \lambda_2 - \lambda_1 = 6 \times 10^{-5}$$
 cm.

R.P. = 
$$\frac{\lambda}{d\lambda} = \frac{5893 \times 10^{-5}}{6 \times 10^{-5}} = 997.166$$

$$N = \frac{\lambda}{m d \lambda} = \frac{997.166}{2} = 498.38$$

$$N = 498$$

3000 The no. of lines / cm on the given grating is = - $\overline{0.5} = 6000$  which is quite large. Hence, the sodium lines will be well resolved.

Result : Both the wavelengths 5890 A° and 5896 A° will be well resolved in the 2nd

|                                                    | (1-32)                                                                                             | Diffro                                                                     |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Engineering Physics - II<br>Problem 19             |                                                                                                    | Engineering Phy                                                            |
| Which particular sp<br>that of the transparency in | pectra would be absent when the wide<br>n a grating?                                               | th of the opacity is do<br>(M.U. Dec. 2010) (h<br>Deduce<br>widths are 0.1 |
| Solution :                                         |                                                                                                    | Solution :                                                                 |
| <b>Data</b> : $a = 2b$                             |                                                                                                    | Data :                                                                     |
| Formula :                                          | $(a+b) \sin \theta = m\lambda$ : maxima<br>$b \sin \theta = n\lambda$ : minima                     | Formul                                                                     |
|                                                    | $m = \frac{a+b}{b}n.$                                                                              | Calcula                                                                    |
| Calculations :                                     | $m = \frac{2b+b}{b} n = 3n$<br>m = 3, 6, 9,                                                        | Result :                                                                   |
| in and                                             | 6 <sup>th</sup> , 9 <sup>th</sup> orders will remain absent.                                       | Problem 22                                                                 |
| Result : The 3 <sup>rd</sup> ,                     | 6", 9" orders will remain desents                                                                  | Find the                                                                   |
| Problem 20                                         |                                                                                                    | illuminated by                                                             |
| Calculate the min                                  | nimum number of lines required on a                                                                | grating that can just rest Solution :                                      |
| the two sodium lines $\lambda$                     | $\lambda_1 = 5890 \text{ A}^\circ \text{ and } \lambda_2 = 5893 \text{ A}^\circ \text{ in the th}$ | (M.U. Dec. 2014) (5 Data :                                                 |
| Solution :                                         |                                                                                                    |                                                                            |
| Data: $\lambda_1$                                  | $= 5890 \text{ A}^{\circ} = 5890 \times 10^{-8} \text{ cm},$                                       |                                                                            |
| λ2                                                 | $= 5893 \text{ A}^{\circ} = 5893 \times 10^{-8} \text{ cm}, \text{ m} = 3.$                        |                                                                            |
| Formula : Res                                      | solving power = $\frac{\lambda}{d\lambda}$ = mN.                                                   | Calcula                                                                    |
| Calculations :                                     | $\lambda = \frac{\lambda_1 + \lambda_2}{2} = \frac{(5890 + 5896) \times 1}{2}$                     | 0 <sup>-8</sup>                                                            |
|                                                    | $= 5893 \times 10^{-8} \text{ cm}$                                                                 |                                                                            |
| Mr. and                                            | $d\lambda = (5896 - 5890) \times 10^{-8} = 6 \times 10^{-8}$                                       | Here.                                                                      |
|                                                    | $N = \frac{\lambda}{m d\lambda} = \frac{5893 \times 10^{-8}}{3 \times 6 \times 10^{-8}} = 327.3$   | 38 Hence, 1                                                                |
| Hence, the grating                                 | surface needs minimum of 327.38 li                                                                 |                                                                            |
| lines, at least.                                   |                                                                                                    | 1 GSRT                                                                     |

Result : Minimum of 328 lines are required.

Rsult : Maximum resolving power = 24000.

ALT HIDIT

100

the missing orders for a double slit Fraunhoffer diffraction pattern if the slit 16 mm and they are 0.8 mm apart. 

10-2012

ula : Missing orders, 
$$m = \left(\frac{a+b}{b}\right)r$$

 $m = \frac{0.08 + 0.016}{0.016} n = 6n$ ations : m = 6, 12, 18, .....

: The 6<sup>th</sup>, 12<sup>th</sup>, 18<sup>th</sup>, ..... etc. orders will be absent.

ne maximum resolving power of a grating 2 cm wide with 6000 lines / cm y a light of wavelength 5890 A°.

Width of grating surface = 2 cm

$$a + b = \frac{1}{6000}$$
 cm,  $\lambda = 5890$  A° = 5890 × 10<sup>-8</sup> cm.

RP = mN, la :  $(a + b) \sin \theta = m \lambda, m = 1, 2, 3, ....$ GOL - manufacture and

$$(RP)_{max} = m_{max} \cdot N$$
  
 $m_{max} = \frac{a+b}{\lambda}, \text{ since } \theta_{max} = 1$   
 $m_{max} = \frac{1}{6000 \times 5890 \times 10^{-8}} = 2.8$   
 $2 < m_{max} < 3.$ 

 $m_{max} = 2.$ 

$$N = 6000 \text{ lines } / \text{ cm} \times 2 \text{ cm} = 12000 \text{ lines}$$

$$RP_{max} = 2 \times 12000 = 24000$$

#### Problem 23

What is the highest order spectrum which can be seen with monochromatic light Problem 25 wavelength 6000 A° by means of a diffraction grating with 5000 lines / cm.

## (M.U. Dec. 2013; May 2017)

#### Solution :

 $\lambda = 6000 \text{ A}^\circ = 6 \times 10^7 \text{ m}$ . No. of lines / cm = 5000 Data : **Formula**:  $(a + b) \sin \theta = n\lambda$ ; n = 1, 2, 3, ....

**Calculations**: 
$$(a + b) = \frac{1}{5000} = 2 \times 10^{-6} m$$

For  $n = n_{max}$ ,  $\sin \theta = 1$ 

$$n_{\text{max}} = \frac{a+b}{\lambda}$$

$$n_{\text{max}} = \frac{2 \times 10^{-6}}{6 \times 10^{-7}} = 3.3$$

**Result :** Highest order = 3.

#### Problem 24

Calculate the maximum order of diffraction maxima seen from a plane diffract grating having 5500 lines/cm if light of wavelength 5896 A° falls normally on it. (M.U. May 2015) (5

Solution :

No. of lines / cm = 5500,  $\lambda = 5896 \text{ A}^\circ = 5896 \times 10^{-7} \text{ m}.$ Data : **Formula**:  $(a + b) \sin \theta = n \lambda$ ; n = 1, 2, 3, ....

**Calculations :** For  $n = n_{max}$ ,  $\sin \theta = 1$ 

$$n_{max} = \frac{a+b}{\lambda}$$

$$a+b = \frac{1}{5500} = 1.818 \times 10^{-6} \text{ m}$$

$$n_{max} = \frac{1.818 \times 10^{-6}}{5896 \times 10^{-10}} = 3.08$$

**Result :** Maximum order,  $n_{max} = 3$ .

#### Engineering Physics - II

Solution : Data :

...

...

Problem 26

Solution : Data

Form

2 15 6 12 178

A diffraction grating used at normal incidence gives a yellow line ( $\lambda = 6000 \text{ A}^\circ$ ) in a certain spectral order superimposed on a blue line ( $\lambda = 4800 \text{ A}^\circ$ ) of next higher order. If the angle of diffraction is sin<sup>-1</sup> (3/4), calculate the grating element. (M.U. Dec. 2015) (5 m)

TO DEPENDENCE OF

7 CHERTER ALLER AND RELATED AND

Count of a trike a superstant

$$\lambda_1 = 6000 \text{ A}^\circ = 6 \times 10^{-7} \text{ m}, \qquad \lambda_2 = 4800 \text{ A}^\circ = 4.8 \times 10^{-7} \text{ m},$$
  

$$\theta = \sin^{-1} (3/4) \qquad \text{is } 0 = (3/4) = 0.75$$

$$\theta = \sin^{-1}(3/4)$$
 :  $\sin \theta = (3/4) = 0.75$ .

**Formula**:  $(a + b) \sin \theta = n \lambda$ ; n = 1, 2, 3, ....

Calculations: For given (a + b) and  $\theta$ ,

$$n \propto \frac{1}{\lambda}$$

Since  $\lambda_1 > \lambda_2$ ,

$$(a + b) \sin \theta = n \lambda_{1}$$

$$(a + b) \sin \theta = (n + 1) \lambda_{2}$$

$$n \lambda_{1} = (n + 1) \lambda_{2}$$

$$n = \frac{\lambda_{2}}{\lambda_{1} - \lambda_{2}} = \frac{4.8 \times 10^{-7}}{6 \times 10^{-7} - 4.8 \times 10^{-7}} = 4$$

$$a + b = \frac{n \lambda_{1}}{\sin \theta} = \frac{4 \times 6 \times 10^{-7}}{0.75} = 32 \times 10^{-7} \text{ m}$$
Grating element =  $3.2 \times 10^{-6}$ 

**Result :** Grating element =  $3.2 \times 10^{-10}$ m.

A plane grating just resolves two lines in the second order. Calculate the grating element if  $d\lambda = 6 \text{ A}^\circ$ ,  $\lambda = 6 \times 10^{-5}$  cm and the width of the ruled surface is 2 cm.

(M.U. Dec. 2013) (5 m)

Billion - 15

: 
$$d\lambda = 6 A^{\circ} = 6 \times 10^{-10} m$$
,  $m = 2$ ,  $\lambda = 6 \times 10^{-5} cm = 6 \times 10^{-7} m$ .  
Width of ruled surface = 2 cm.

*nula*: 
$$\frac{\lambda}{d\lambda} = mN$$
,  $a+b = \frac{1}{\text{Number of lines/cm}}$ 

Calculations:  $N = \frac{\lambda}{md\lambda} = \frac{6 \times 10^{-7}}{2 \times 6 \times 10^{-10}} = 500$ No. of lines/cm =  $\frac{N}{2} = \frac{500}{2} = 250$ Grating element,  $(a + b) = \frac{1}{250} = 4 \times 10^{-3} \text{ cm}$ **Result :** Grating clement =  $4 \times 10^{-5}$  m.

#### Problem 27

Calculate the minimum number of lines in a grating which will just resolve in (M.U. Dec. 2014) (s first order the wavelengths 5890 A° and 5896 A°.

Solution :

**Data:**  $\lambda_1 = 5890 \text{ A}^\circ = 5890 \times 10^{-10} \text{ m},$  $\lambda_2 = 5896 \text{ A}^\circ = 5896 \times 10^{-10} \text{ m}, \quad \text{m} = 1.$ Formula:  $\frac{\lambda}{d\lambda} = mN$ **Calculations:**  $d\lambda = 6A^\circ = 6 \times 10^{-10} \text{ m}$  $\lambda = \frac{\lambda_1 + \lambda_2}{2} = 5893 \text{ A}^\circ = 5893 \times 10^{-10} \text{ m}$  $N = \frac{\lambda}{md\lambda} = \frac{5893 \times 10^{-10}}{1 \times 6 \times 10^{-10}} = 982.166$ 

**Result :** Minimum number of lines required = 982.

#### Problem 28

Light is incident normally on a grating 0.5 cm wide with 2500 lines. Find the angu separation of the two sodium lines in the first order spectrum. Can they be seen distinctive if the lines are 5890 A° and 5896 A°?

Solution :

Data : Number of lines/cm = 5000, m = 1,  $\lambda_1 = 5890 \text{ A}^\circ, \ \lambda_2 = 5890 \text{ A}^\circ.$ 

 $(a + b) \sin \theta = n \lambda$ ,  $mN = \frac{\lambda}{d \lambda}$ Formula :

÷

*.*..

...

Here,

Number of lines / cm required on the grating = 982. Number of lines / cm available on the grating = 50000Results :  $\theta_2 - \theta_1 = 0.0177^\circ$ 

(i

1.

2.

(i

(1-37)

Diffraction

States -

AL SLAD

23 TELEPRATE

the one tom and the

Calculations :

$$(a + b) \sin \theta_{1} = \lambda_{1}$$
  

$$\theta_{1} = \sin^{-1} \left( \frac{\lambda_{1}}{a + b} \right)$$
  

$$= \sin^{-1} (5890 \times 10^{-8} \times 5000)$$
  

$$\theta_{1} = 17.1275^{\circ}$$
  

$$(a + b) \sin \theta_{2} = \lambda_{2}$$
  

$$\theta_{2} = \sin^{-1} \left( \frac{\lambda_{2}}{a + b} \right)$$
  

$$= \sin^{-1} (5896 \times 10^{-8} \times 5000)$$
  

$$\theta_{2} = 17.1455^{\circ}$$
  

$$\theta_{2} - \theta_{1} = 17.1455^{\circ} - 17.1275^{\circ} = 0.0177^{\circ}$$
  

$$d\lambda = 6 A^{\circ}, \lambda = 5893 A^{\circ}$$

$$N = \frac{\lambda}{m d \lambda} = \frac{5893 \times 10^{-8}}{6 \times 10^{-8}} = 982$$

These lines will be resolved well by the grating.

### Important Points to Remember

Fraunhoffer Diffraction

(i) At single slit, 
$$I = I_0 \frac{\sin^2 \beta}{\beta^2}$$
  
(ii) At N slit,  $I = I_0 \frac{\sin^2 \beta}{\beta^2} \cdot \frac{\sin^2 N \gamma}{\sin^2 \gamma}$   
where  $\beta = \frac{\pi b \sin \theta}{\lambda}$  and  $\gamma = \frac{\pi d \sin \theta}{\lambda}$   
Diffraction maxima :  $(a + b) \sin \theta = n \lambda$   
Diffraction minima :  $b \sin \theta = n \lambda$ 

3. (a + b) = grating element Engineering Physics - II  $a + b = \frac{1}{N_{0}}$  of lines / cm on the granting surface 4. a = width of opaque space (rulings), b = slit width. 5. Absent spectra :  $m = \left(\frac{a+b}{b}\right)n$ 6. grating. m = order of absent maxima, n = order of regular minima (1, 2, ....)Maximum order :  $m_{max} = \frac{a+b}{\lambda}$ 7. Resolving power of a grating :  $RP = \frac{\lambda}{d\lambda} = mN$ . 8.  $\lambda = \frac{\lambda_1 + \lambda_2}{2}, \quad d\lambda = (\lambda_1 - \lambda_2)$ EXERCISE (A) Short Answer Type Questions

- What are the types of diffraction? Differentiate between them. 1.
- What are called absent spectra? Explain. 2.
- 3. Define a diffraction grating. What is grating element?
- What is called the maximum visible order in a diffraction spectrum? Explain. 4.
- What are the advantages of increasing the number of rulings on the grating? 5.
- Explain Rayleigh's criteria for resolution. 6.
- Explain how is the number of missing orders dependent on the dimensions of 7. grating.

### (B) Long Answer Type Questions

- Discuss the phenomenon of Fraunhoffer diffraction at a single slit and obtain 1. conditions for maxima and minima.
- 3. Discuss the phenomenon of Fraunhoffer diffraction at N slit and obtain the conditi for maxima and minima.

(i)

- (ii)

# Previous University Examination Questions with Solutions

[Refer § 1.1] [ Refer §-1.2.4 ]

What is a diffraction grating and the grating element? Explain the experimental method of determination of wavelength of spectral line using diffraction grating.

State Rayleigh's criteria for resolution. Define resolving power of an optical instrument. Derive an expression for the resolving power of a plane transmission

### (C) Problems for practice

Red light of wavelength 7500 A° is normally incident on a plane transmission grating with 6000 lines / cm. How many diffraction orders are observed? [Ans.:2] A diffraction grating with 3086 lines / cm gives a line (5400 A°) in a certain order superposed on another line of the next higher order. If the angle of diffraction is 30°, calculate the wavelength of the second line. [Ans.: 4050 A°]

In a grating with 5000 line / cm for is wavelength of 6000 A°, what is the highest order spectrum observed? If a = 2b which order of spectra will be absent?

[Ans. : 3, 3rd, 6th, 9th, .....]

The light of wavelength 6000 A° is incident normally on a plane diffraction grating of 1000 lines / cm. Calculate :

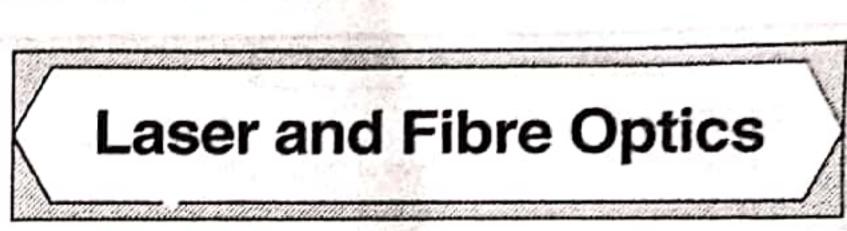
The difference between the wavelengths that just appear separated in the first order, and

The resolving power of the third order spectrum. [Ans.: 6 A°, 3000]

Light is incident normally on a grating 0.5 cm wide with 2500 lines. Find the angle of diffraction for the principal maximum of the two sodium lines the first order spectrum [  $\lambda_1 = 5890 \text{ A}^\circ$  and  $\lambda_2 = 5896 \text{ A}^\circ$  ]. Are these two lines resolved?

[Ans.: Yes]

Define diffraction of light. Why is it not evident in daily life?


(M.U. May 2008) (3 m)

and the set of the statistical states

What do you mean by diffraction? State its types and differentiate between them. (M.U. May 09, 11; Dec. 2009, 11, 15) (3 m)

| Engl    | Ditto                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                        |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|
| 4.      | Discuss the phenomenon of Fraunhoffer's diffraction at a single slit and obtain<br>condition for the 1 <sup>st</sup> minimum. (M.U. May 20007)<br>[Refer § 1.3.1]<br>For plane transmission grating, prove that the condition for diffraction maximum<br>d sin $\theta = n \lambda$ , $n = 1, 2, 3,$ (M.U. May 2018; Dec. 2014, 19)<br>[Refer § 1.3.2]<br>Describe the construction of a diffraction grating. What is grating and grating elements | MODUL<br>2                               | quisites :                                             |
| 5.      | Explain the experimental method of determination of wavelength of a spectral<br>using diffraction grating. (M.U. May 2008, 11, 13, 16, 17; Dec. 2009, 12, 17)<br>[ Refer § 1.4, 1.4.1 (A), 1.6 ]                                                                                                                                                                                                                                                   | Refracti<br>Laser<br>Populat<br>Helium   | ive index of<br>Spontane<br>ion inversion<br>Neon lase |
| 6.      | What is diffraction grating? What is the advantage of increasing the number of                                                                                                                                                                                                                                                                                                                                                                     | Hologra                                  | phy.                                                   |
|         | in a grating? (M.U. May 2010; Dec. 2011, 14)                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | ptics : Nu<br>nce, V num                               |
|         | [Refer § 1.4 and 1.5.2]                                                                                                                                                                                                                                                                                                                                                                                                                            | D'1                                      | otic commu                                             |
| 7.      | What is grating element ? Explain how the number of lines on grating decided<br>maximum number of orders of diffraction.                                                                                                                                                                                                                                                                                                                           |                                          |                                                        |
|         | [Refer § 1.4.1 (A) and 1.52 ] (M.U. May 2012, 14; Dec. 2013, 16)                                                                                                                                                                                                                                                                                                                                                                                   |                                          | Outcome                                                |
| 8.      | What is diffraction grating and grating element? Explain the experimental met<br>to determine the wavelength of a spectral line using a diffraction grating.                                                                                                                                                                                                                                                                                       |                                          | us Lasers a<br>d its applic                            |
| 1       | [Refer § 1.4, 1.4.1 (A) and 1.6 ] (M.U. Nov. 2018)                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                        |
| 9.      | What is Rayleigh's criteria of resolution? Write the expression for the resolution                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                        |
|         | power of a grating. (M.U. May 2010, 11, 13, 14, 15; Dec. 2016, 17) (3                                                                                                                                                                                                                                                                                                                                                                              | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | Introducti                                             |
| -       | [Refer § 1.5.2]                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1<br>2.2                               | Quantum                                                |
| 10.     | What is absent spectra? Derive the condition for absent spectra in grating.<br>[Refer § 1.4.1 (B)] (M.U. May 2013, 18; Nov. 2018; Dec. 2010, 16, 19)                                                                                                                                                                                                                                                                                               |                                          | and Stimu                                              |
|         | [ Keiel § 1.4.1 (D) ] (m.o. may 2013, 10, 1007. 2013, Dec. 2010, 16, 19)                                                                                                                                                                                                                                                                                                                                                                           | 2.3                                      | Einstein's                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4                                      | Basic Req<br>Metastable                                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5                                      | Types of F                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.6                                      | LASER S                                                |
|         | and the second                                                                                                                                                                                                                                                                                                                                   | 2.7                                      | Applicatio                                             |
| and the |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | Important                                              |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | Exercise                                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          | Previous U                                             |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                        |

(1.40)



es : Absorption, recombination, energy bands of p-n junction, ex of a material, Snell's law.)

taneous emission and stimulated emission, Metastable state, version, Types of pumping, Resonant cavity, Einsteins's equations, laser, Nd:YAG laser, Semiconductor laser, Applications of laser-

: Numerical Aperture for step index fibre, Critical angle, Angle of number, Number of modes of propagation, Types of optical fibres, nmunication system. (06 Hours)

(Weightage - 27%)

ome: CO2: Learner will be able to illustrate the working principle ers and their applications in different fields, the concept of optical pplications in communication system.

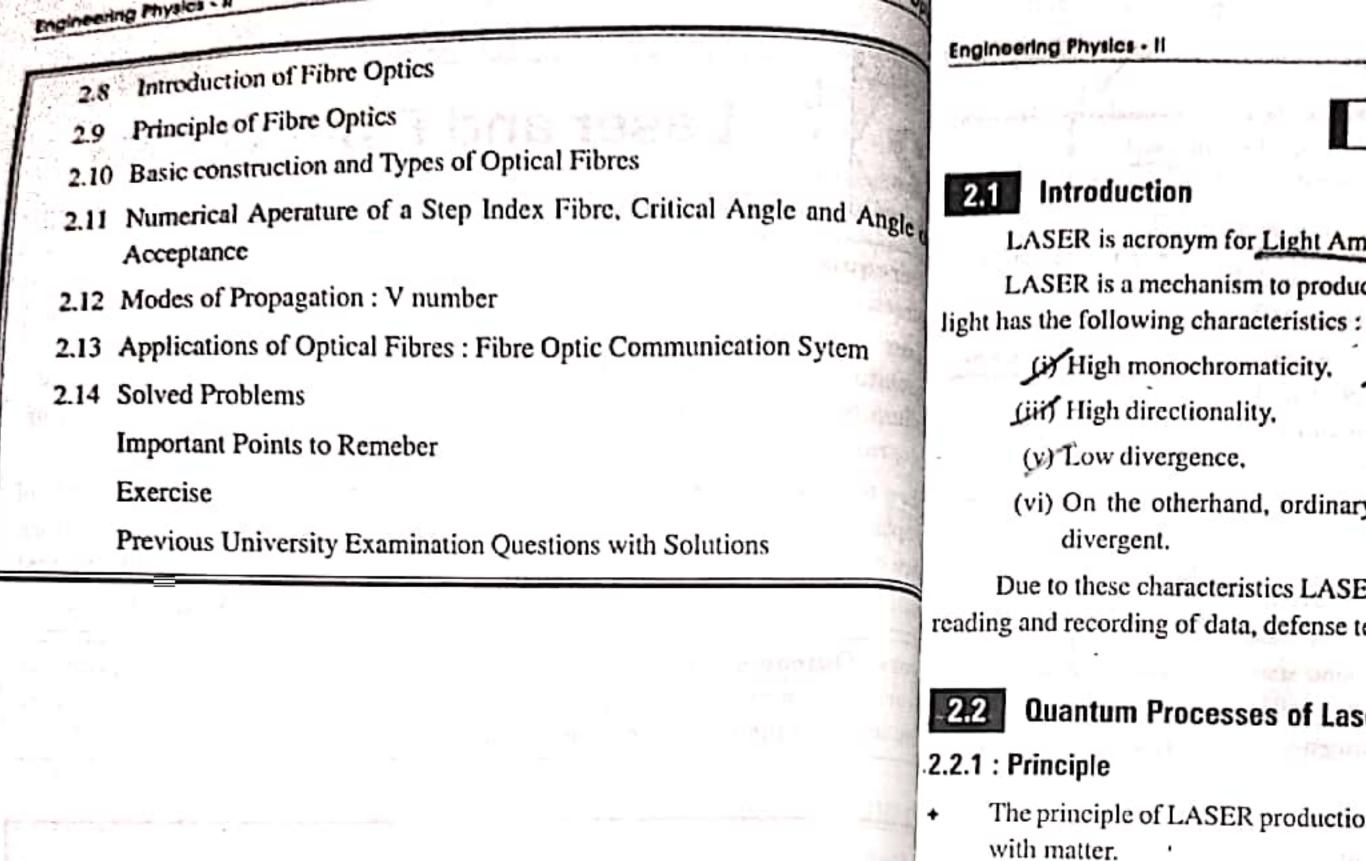
### SYNOPSIS

duction of LASER

tum processes of Laser Production : Absorption, Spontaneous emission timulated emission.

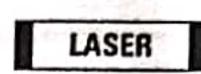
ein's Coefficients

Requirements of LASER Production : Population inversion, Pumping, stable state, Resonant Cavity.


of Pumping

ER Sources : He-Ne, Nd-YAR, Semiconductor

ication of Laser : Holography


rtant Points to Remeber

ous University Examination Questions with Solutions



- a photon.
- respectively.

Absorption : When an atom in the ground state E1 absorb an incident photon its energy increases by an amount hv and it goes to the excited state E<sub>2</sub>. This process is called absorption that can be represented by



(2-3)

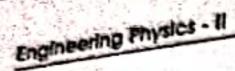
LASER is acronym for Light Amplification by Stimulated Emission of Radiation. LASER is a mechanism to produce a light beam with very special features. LASER

(i) High monochromaticity, (ii) High coherence.

(iii) High directionality. (iii) High intensity, and

(vi) On the otherhand, ordinary light is polychromatic, incoherent and highly

Due to these characteristics LASER radiations are used in communication systems, reading and recording of data, defense technology, holography and so on.


#### Quantum Processes of Laser Production

The principle of LASER production is based on the theory of interaction of radiation

A material medium is composed of identical atoms or molecules each of which is characterized by a set of discrete energy levels. The atoms can transit between any pair of energy levels when they receive or release an amount of energy equal to the energy difference between the two states.

For simplicity, consider a substance in which atoms have only two allowed energy states, the ground state,  $E_1$  and the excited state,  $E_2$  with  $E_2 - E_1 = hv$ , the energy of

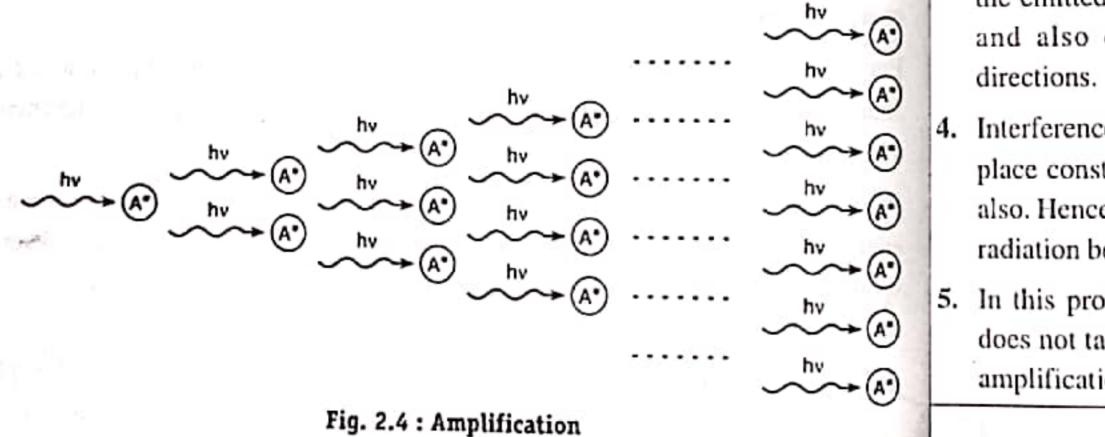
When this substance is exposed to a radiation of a stream of photons each carrying energy, hv, three distinct interaction process can take place. These are absorption spontaneous emission and stimulated emission as shown in Figs. 2.1, 2.2 and 2.3

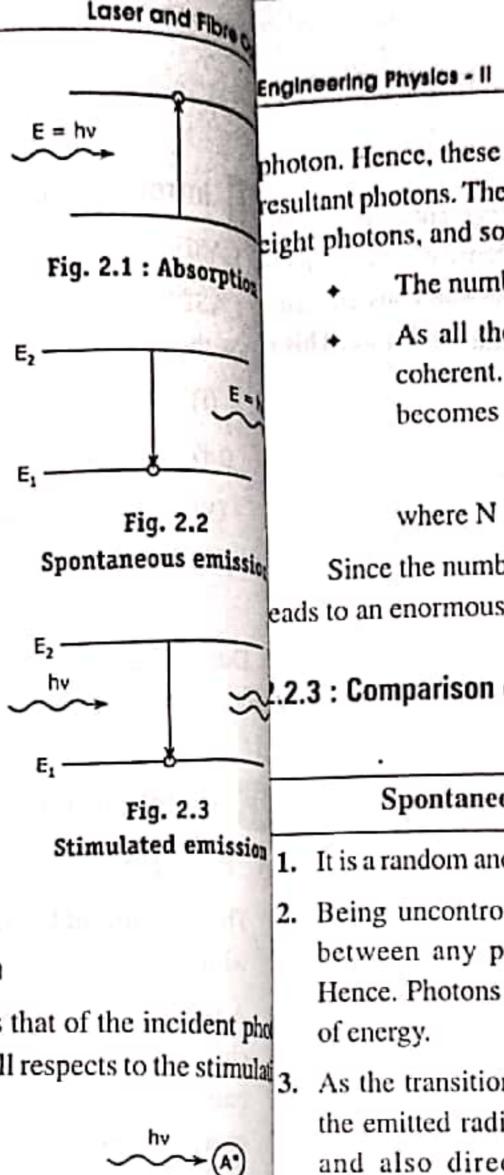


 $A + h\nu \rightarrow A^*$ 

where, A = ground state photon and  $A^* =$  excited state photon.

Spontaneous emission : Normally the excited state is an unstable state where the lifetime of an atom is very short, around 10<sup>-8</sup> sec. Hence the atom in the excited state, E2 returns to the ground state spontaneously by releasing one photon of energy, hv. This process is called spontaneous emission which can be represented by


$$A^* \rightarrow A + hv$$


Stimulated emission : In this process an incident (iii) photon is absorbed by an excited atom as a result of which the atom becomes unstable in the state E<sub>2</sub> and makes a transition to the ground state releasing two photons. This process is called stimulated emission which can be written as

 $A^* + hv \rightarrow A + 2hv$ 

#### 2.2.2 : Amplification by Stimulated Emission of Radiation

The emitted photons propagate in the same direction as that of the incident pho or the stimulating photon. These two photons are identical in all respects to the stimulai 3.





(2-4)

photon. Hence, these two photons will stimulate two more excited atoms resulting in four resultant photons. These four photons in turn stimulate four more excited atoms and generate eight photons, and so on. This is shown in Fig. 2.4.

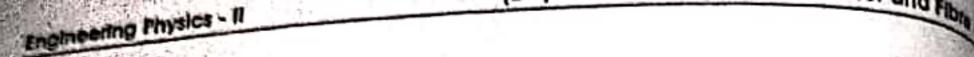
The number of photons is built up in an avalanche manner.

As all the light waves are generated from one initial wave all of them are coherent. Being in phase they interfere constructively the net intensity of which

 $I_{total} \propto N^2$ 

where N is the number of atoms present in the material.

Since the number of atoms in the material medium is very large, coherent emission eads to an enormously high intense light.


# 2.2.3 : Comparison of Stimulated Emission and Spontaneous Emission

| Spontaneous emission                                                                                                                                         | Stimulated emission                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| It is a random and uncontrolled process.                                                                                                                     | 1. It is a controlled process.                                                                                                                |
| Being uncontrolled it can take place<br>between any pair of energy states.<br>Hence. Photons can carry any amount<br>of energy.                              | <ol> <li>It is possible only between two specified<br/>energy states. Hence, all emitted<br/>photons carry equal amount of energy.</li> </ol> |
| As the transition take place randomly<br>the emitted radiation are not in phase<br>and also directed in all possible<br>directions.                          | <ol> <li>All the emitted photons are in phase and<br/>travel in the same direction.</li> </ol>                                                |
| Interference of emitted radiations take<br>place constructively and destructively<br>also. Hence the intensity of the emitted<br>radiation becomes moderate. | <ol> <li>The emitted radiations being in phase<br/>interfere constructively only. Hence the<br/>intensity becomes very high.</li> </ol>       |
| In this process photon multiplication<br>does not take place. Hence there is no<br>amplification of light.                                                   | <ol> <li>Light amplification occurs due to mul-<br/>tiplication of photons.</li> </ol>                                                        |

15.31

1 B 8 3

Table 2.1



# **Einstein's Coefficients**

Consider a medium with atoms having only two allowed energy states E. with population N1 and N2 respectively. When a radiation of density 'p' is in on this medium, the three interaction processes, absorption, spontaneous en and stimulated emission take place with probabilities Pabs, Psp.em and Pst. em. 1 shown in Fig. 2.5.

The probability of the absorption process to occur depends on :

(i) The number of atoms present at the ground state (N1) and

(ii) The photon density (p) of the incident radiation.

Hence, it is given by

$$P_{abs} = A_{12} \rho N_1 \dots (2.1-a)$$

where A12 is the proportionality constant called the Einstein's coefficient of absorption.

The probability that the spontaneous emission will take place depends on the number of atoms are excited to the higher state (N2) and is given by

$$P_{sp. em} = B_{21} N_2$$
 ..... (2.1-b)

where B12 is the proportionality constant called the Einstein's coefficient of spontaneous emission.

Lastly, the stimulated emission takes place with a probability that depends on :

- (i) The number of atoms present at the excited state  $(N_2)$  and
- (ii) The photon density of the incident radiation ( $\rho$ ) and is given by

 $P_{st.\,em} = C_{21}\rho N_2$  .....(2.1-c)

where the proportionality constant C21 is called the Einstein's coefficient of stimul emission.

In thermal equilibrium, the probability of transition from state  $E_1$  to  $E_2$  must equal to the same from  $E_2$  to  $E_1$ . Thus,

$$P_{abs} = P_{sp. em} + P_{st. em}$$

ρ(/

Fig. 2.5 (a)

Fig. 2.5 (b)

Fig. 2.5 (c)

......

Comparing this with Planck's radiation formula,

It is found that

and

Equation (2.6) shows that the Einstein's coefficients for absorption and stimulated emission are equal. This can be explained as follows :

Using equation (2.6) in this, the ratio becomes

For ordinary visible light with an average wavelength of  $\lambda = 5000$  A° at room temperature T = 300 Kmm、 副新 - 外引 - 建筑运行等于本

A State State State

and the liter to serve the server and

Engineering Physics - II

(2-7)

$$A_{12} \rho N_1 = B_{21} N_2 + C_{21} \rho N_2$$
$$A_{12} N_1 - C_{21} N_2) = B_{21} N_2$$

$$P = \frac{B_{21}N_2}{A_{12}N_1 - C_{21}N_2} = \frac{B_{21}N_2/C_{21}N_2}{\frac{A_{12}}{C_{21}} \frac{N_1}{N_2} - 1}$$
$$= \frac{B_{21}/C_{21}}{\frac{A_{12}}{A_{12}} \times e^{(E_2 - E_1)/kT} - 1}$$

$$\frac{A_{12}}{C_{21}} \times e^{(E_2 - E_1)/kT} - 1$$

Here  $N_1 = e^{-E_1/kT}$  and  $N_2 = e^{-E_2/kT}$  by Maxwell - Boltzmann distribution where, 'k' is Boltzmann constant and 'T' is the absolute temperature.

$$\rho = \frac{8\pi h v^3}{c^3} \left( \frac{1}{e^{hv/kT} - 1} \right) \qquad .....(2.4)$$

11209

$$\frac{B_{21}}{C_{21}} = \frac{8\pi hv^3}{c^3} \qquad (2.5)$$

$$\frac{A_{12}}{C_{21}} = 1 \quad i.e., \quad A_{12} = C_{21} \qquad (2.6)$$

Taking ratio of equation (2.1-c) and (2.1-a), it is found that

$$\frac{P_{\text{st.em.}}}{P_{\text{abs}}} = \frac{C_{21}\rho N_2}{A_{12}\rho N_1}$$

$$\frac{P_{\text{st.em.}}}{P_{\text{abs}}} = \frac{N_2}{N_1} = e^{-(E_2 - E_1)/kT} = e^{-hv/kT} \qquad (2.7)$$

20、42444449、1月19日2月19日14日。 201

$$\frac{P_{st.em.}}{P_{abs}} = e^{-hc/\lambda kT} = 10^{-44}$$

which is negligible.

This means that stimulated emission does not occur naturally. It needs to be int artificially to produce LASER.

#### **Basic Requirements for LASER Production** 2.4

When a radiation is incident on a material medium, all the three process. absorption, spontaneous emission and stimulated emission take place. Of these processes stimulated emission is essential for the production of LASER. Hence, stimul emission should dominate absorption and spontaneous emission. To make it possible requirements are as follows :

#### 2.4,1 Population Inversion

- This is a state of matter in which the number of atoms in the excited state higher than that in the ground state.
- This can be explained by considering equations (2.1-a) and (2.1-c). For LAN production it requires to be

 $P_{st. em.} > P_{abs}$  $C_{21} \rho N_2 > A_{12} \rho N_1$ 

Here  $C_{21} = A_{12}$ , as seen in equation (2.27). Hence,

 $N_2 > N_1$ 

The chances of stimulated emission taking place increases when the state population inversion is achieved in the medium.

### 2A2: Pumping

- Usually atoms have a tendency to return to the ground state releasing absorbed energy. Hence, the population of the ground state is found to be gr than that of the higher excited state.
- Thus, the state of population inversion can not be achieved naturally. Ith be induced artificially by continuously raising a large number of atoms to higher energy state with continuous supply of external energy. This is c the pumping mechanism.

#### Engineering Physics - II

- **(h**) (ii)
- (iii)

# 2.4.3 : Metastable State : Need of a Three Level System

٠

٠

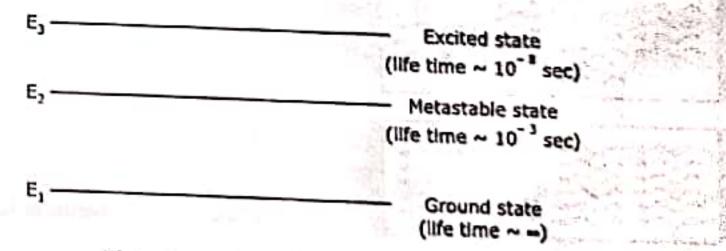
٠

Various methods of pumping that are generally used are as follows :

Optical pumping : In this case optical energy is incident on the atomic system. On absorbing photons of the required energy value the atoms transit to the higher energy states.

Electrical pumping : A strong electric field is applied to the atomic system with the use of a high voltage power supply. The high energy electrons collide with the atoms and transfer their kinetic energy to the later. As a result atoms rise to the higher energy state.

Direct conversion : In this method the electrical energy directly creates the state of population inversion and LASER is produced. Here the electrical energy is directly converted into optical energy.


In the excited states atoms have a very short life time of areand 10<sup>-8</sup> sec. hence the excited atoms have a natural tendency to rapidly de-excite to the ground state through spontaneous emission.

Even though atoms are continuously pumped to the excited state it is not possible to achieve the state of population inversion.

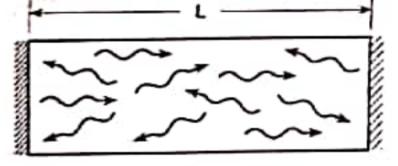
Atoms do not stay in the excited state for a significant period of time so as to be stimulated by the incident radiation.

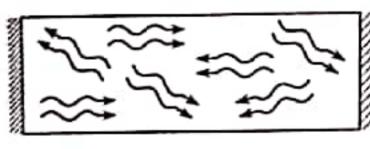
Therefore, a third kind of energy state called the metastable state is required. In a metastable state the life time of atoms is around 10<sup>-3</sup> sec. which is much Tonger than the time required for spontaneous emission to take place. Hence, a large number of atoms get accumulated at this level making the population inversion and stimulated emission possible.

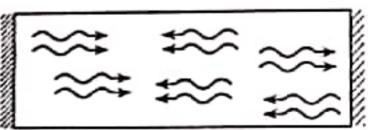
Metastable states are not artificially created. These are naturally present in between the ground state and the excited state in some materials as shown in Fig. 2.6.

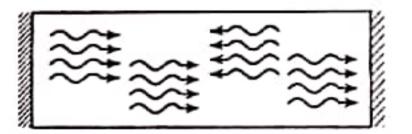


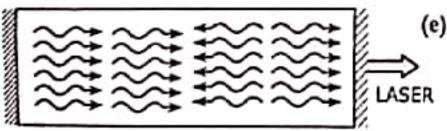



Engineering Physics - II Therefore, for LASER production the materials to be used need to h Engineering Physics - II least three allowed atomic energy levels: the ground state, the mete state and the excited state.


# 2.4.4 : Resonant Cavity : Optical Resonator


A pair of optically flat parallel mirrors one totally reflecting and the other Pa 2.5 reflecting constitutes the optical resonator or resonant cavity. The two reflectors the medium that emit LASER radiation.


The functions of a resonant cavity are explained in Fig. 2.8 as follows :


Light initially generated in a LASER source is primarily due to sponta 1. emission. These spontaneous photons being incoherent in nature a contribute to the LASER beam. The photons, instead of being wasted, utilized as the trigger photons for the induction of stimulated emission a resonant cavity the spontaneous photons are fed back to the mediumf. purpose.











- Immediately after the atoms are pumped (a) into excited states spontaneous photons are emitted.
- Spontaneous photons initiate stimulated (b) emission and the pairs of coherent photons are released in all directions.
- Light waves traveling along the axis form (c) standing waves (L =  $n\lambda / 2$ ) between the reflectors by reflections and other waves are lost.
- Each of the photons in its back and forth (d) journey triggers more stimulated emission and create more coherent photons.
  - The large number of coherent waves interferes constructively and high amplitude, high intensity LASER beam comes out of the partial reflector.

The stimulated photons, which are coherent in nature, when undergo multipli-2. cation by repetitive reflections at the two reflectors interfere constructively and a higher amplified LASER beam is produced.

re :

The three energy levels involved in the atomic transition for laser production are the round state,  $E_1$ , one metastable state,  $E_2$  and the excited state,  $E_3$ . The principle of LASER production in three levels pumping is explained in Fig. 2.8.

E, -++

Ε,

Incident 3 radiation

٠

٠

٠

٠

- energy.

Fig. 2.7

# Types of Pumping : Three Level and Four Level Lasing Schemes

Generally there are two types of pumping schemes used in LASER production. These

#### Three Level Pumping Scheme

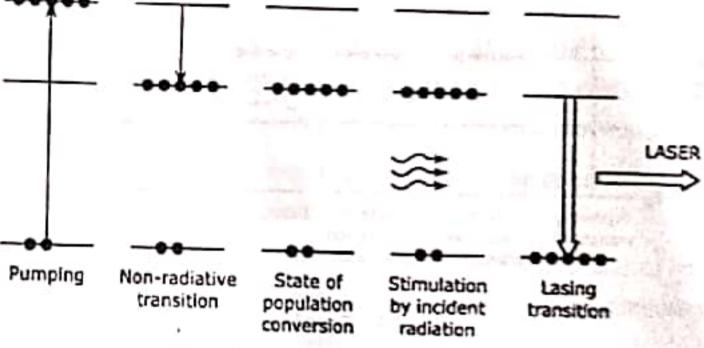



Fig. 2.8 : Three level Laser

The atoms are raised to the excited state by pumping transition.

Having a very short life time in the excited state, atoms immediately goes down to the metastable state by non radiative transition, emitting some heat

Since spontaneous emission is not possible in a metastable state atoms stay in level E2 for a significant period of time. This results into population inversion between states  $E_2$  and  $E_1$ . the reasonable the second frequency of the second second

The medium keeps on receiving the incident radiation. The incident radiation initiates the atoms of level E2 to transit simultaneously to the ground state. The lasing transition occurs between levels E2 and E1.

to all notadat rolling

(2-11)

- In this scheme population inversion occurs between the metastable sta and ground state E1 which is possible only when more than half of the state atoms are pumped to the higher state. This requires a very high put power.
- Once the lasing transition is over the metastable state is empty and the state is full. The next lasing is possible only after the population invent re-established. Thus, the three level laser operates in pulsed mode.

#### Four Level Pumping Scheme (b)//

- In this case the atoms of the material used have four allowed energy le 2.6 the ground state, E1, two metastable states, E2 and E3 and the excited states
  - The Lasing mechanism in a four level system is explained in Fig. 2.9, 2.6.1 : Fundamentals of a LASER Source

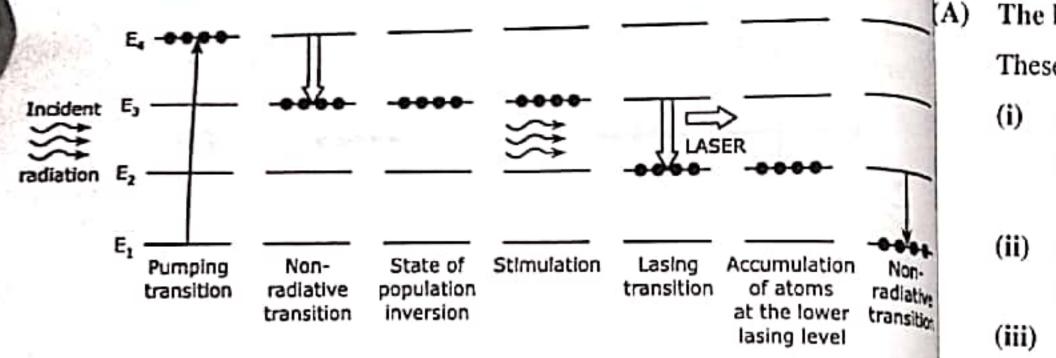



Fig. 2.9 : Four level Laser

- By pumping transition atoms are raised to the excited state,  $E_4$ .
- Being unstable in the excited state, E4 almost immediately the atoms und non radiative transition emitting heat energy and reach the upper metas state E<sub>3</sub>.

Population inversion occurs between the metastable states  $E_3$  and  $E_2$ . ٠

- Being initiated by the incident energy all the atoms simultaneously tran the lower metastable state, E2. Here E3 is the upper lasing level and E1 lower lasing level between which the lasing transition takes place and LA is emitted.
- All the atoms are accumulated in level E2. As E2 is a metastable states can not go down to the ground state by spontaneous emission. Instead radiation transition the atoms to the ground state.

By the time the first lot of atoms returns to the ground state another lot of atoms through pumping reaches the level E3 re-establishing population inversion between levels E3 and E2 which eventually results in Laser production. Thus a four level laser operates in continuous wave mode.

As the lower lasing level E2 is almost vacant very small pumping power is required to achieve population inversion between the upper Lasing level E<sub>3</sub> and the lower lasing level E2.

# LASER Sources : He-Ne, Nd-YAG, Semiconductor

# The basic components of a LASER source :

These are as follows :

- An active medium : This is a material in which the state of population inversion can be induced easily. The wavelength of the emitted LASER beam depends on the energy values of the lasing levels of the active medium.
- An energy source : This is required for pumping the atoms from ground state to higher energy levels.
- A resonant / optical cavity : This is required for the feedback of spontaneous photons to the active medium and the multiplication of the stimulated photons which is essential for LASER production.

### The mechanism of a LASER source :

This involves

B)

- (i) Excitation,
- (ii) Population inversion, and
- (iii) Cavity response.

### **Classification of LASER Sources**

LASERs are classified according to the active medium used in the source, as follows :

all with Lastin

and an interior

Turning with the set of the set of the

of an analy of the

- (i) Solid LASER
- (ii) Liquid LASER
- (iii) Gas LASER

- (iv) Dye of chemical LASER, and
- (v) Semiconductor LASER

A few important LASER sources are described below.

# 2.5.2 : He-Ne Laser : A Four Level Gaseous Source Laser

The essential components of this source are as follows :

- Active medium : This is a mixture of Helium and Neon gases with Helium = 10: 1 ratio, filled in a pyrex tube of diameter about 1.5 cm and lenge (i) about 35 cm. The pressure inside the tube is maintained at about 1 mm of Here 'He' is the host gas and 'Ne' is called the activator, because 'Ne' part actively in lasing transition.
- Energy source : This is a high voltage power source of about 4 ky connected to the pyrex tube to excite the active medium. Hence, the pure (ii) is electrical pumping.
- Resonant / optical cavity : A pair of reflectors, one total, and one partials (iii) to the two inner end surfaces of the pyrex tube.

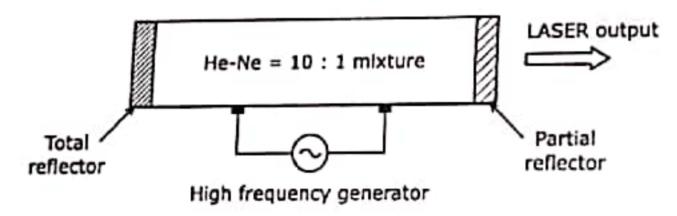
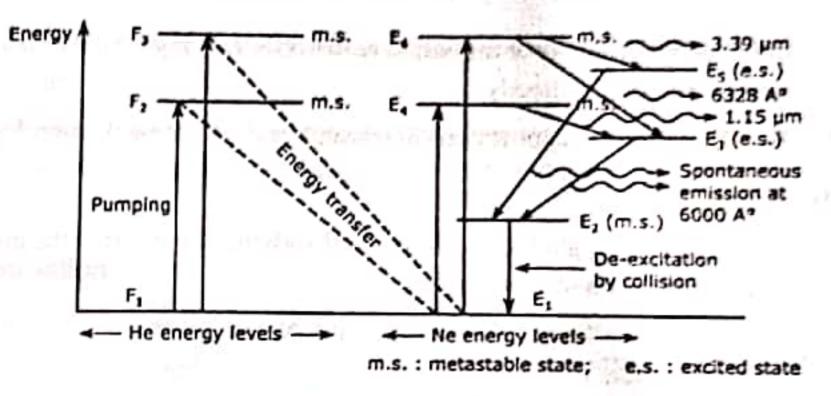
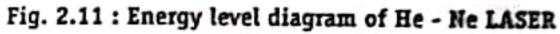



Fig. 2.10 : Construction of He-Ne laser.


#### Working of He - Ne Laser


The working of the Laser source can be explained with the help of its energyk diagram shown in Fig. 2.11.

As the high voltage power supply is switched on, the high energy electric start flowing through the gas mixture and collide with He and Ne atoms the time of impact the electrons transfer their kinetic energy to the gas all He atoms being fairly lighter than Ne atoms, absorb the electron kineticent and are excited to the metastable levels F2 and F3 easily from the grounds F1. This is the pumping transition of He atoms. During this transistion, the atoms exist in the ground state.

٠

٠





The two gases are in close energy level structures as shown in Fig. 2.28. The excited He atoms collide with the ground state Ne atoms and transfer their energy to the later. As a result, the ground state Ne atoms are excited to the metastable energy states E6 and E4 which are almost parallel to the levels F3 and F2 of He respectively. The He atoms return to the ground state.

This causes population inversion in Ne at E6 and E4 levels with respect to E5 and E<sub>3</sub> levels and lasing occurs on three possible transitions as :

emitting LASER of wavelength 3.39 µm in the infrared region,  $E_6 \rightarrow E_5$ 

emitting LASER of wavelength 6328 A° in the visible region,  $E_6 \rightarrow E_3$ 

and  $E_4 \rightarrow E_3$ emitting LASER of wavelength 1.15 µm in the infrared region. The levels E5 and E3 are excited states where the life time of Ne atoms is about  $10^{-8}$  sec. Hence, the Ne atoms transit to the metastable state E<sub>2</sub> from E<sub>5</sub> and E<sub>3</sub> levels by spontaneous emission.

The energy level E<sub>2</sub> is metastable from which spontaneous emission is rare. Hence, Ne atoms are accumulated at level E2. During their stay at E2 level Ne. atoms collide with the tube walls and give up their excess energy as heat energy and returns to the ground state.

By the time the first set of Ne atoms return to the ground state one more set of Ne atoms are raised to level E4 and E6 inducing population inversion and resulting in Lasing action. Hence, He - Ne laser operates continuously and hence emits continuous wave. ALL IN CONSTRAINTS IN A TYPE

As one of the output is in the visible region (6328 A°) the output power is low ranging from 1 mW to 50 mW. Though the output power is low, due to coherent

#### FUGate

radiation the intensity of the output radiation is very high. So it is dange, Engineering Physics - II look at the source directly.

He - Ne Laser has applications in research and educational laboratories

#### Role of He atoms

- He atoms being lighter than Ne atoms absorb the energy from the high. L electrons easily and very fast.
- He atoms have longer lifetime than the Ne atoms at the metastable ... b) 2 Hence, the state of population inversion is maintained for a long time. makes the induction for stimulated emission easy.
- The ratio He : Ne = 10 : 1 makes the probability of energy transfer for 3. atoms to Ne atoms much larger than that of the reverse.
- Being a good conductor of heat He acts as a coolant and no separate cru 4. system is required.

#### Merits

- Continuous output Laser source
- Highly stable 2
- No separate cooling is required 3.

#### Demerits

Low efficiency and low power output.

# 2.6.3 : Nd - YAG Laser : A Four Level Solid Source LASER

Nd-YAG LASER is one of the most popular type of LASER.

#### (a) Components

The essential components of the source are as follows :

(i) Active medium : This is Yttrium Aluminium Garnet (Y3 Al5 O12) or Y which is an optically isotropic crystal in which some of the Y3+ ions are repla by neodymium (Nd<sup>3+</sup>) ions. Therefore, YAG act as the host crystal, and N ions are the activators which take part actively in lasing transition. The ac medium is in the form of a Nd - YAG rod typically of length 10 cm and diameter 12 mm.

### (II)

(iii)

Construction As seen in Fig. 2.12 the system consists of a pair of optically cylindrical reflectors ousing the Nd-YAG rod along one focus line and the flash lamp along the other focus ine. The light leaving one focus of the ellipse reaches the other focus after reflection from he inner silvered surface of the cylindrical reflectors. Thus the total flash lamp radiation is ncident on the ND-YAG rod.

Ellipsoidal reflector (totally reflecting)

Working

٠

٠

C)

(2-17)

and the Stark with

Energy source : A krypton flash lamp in tube from is used as the energy source.

Resonator / optical cavity : The two ends of the Nd-YAG rod are polished and silvered partially at one side and totally at the other side to form the optical resonator.

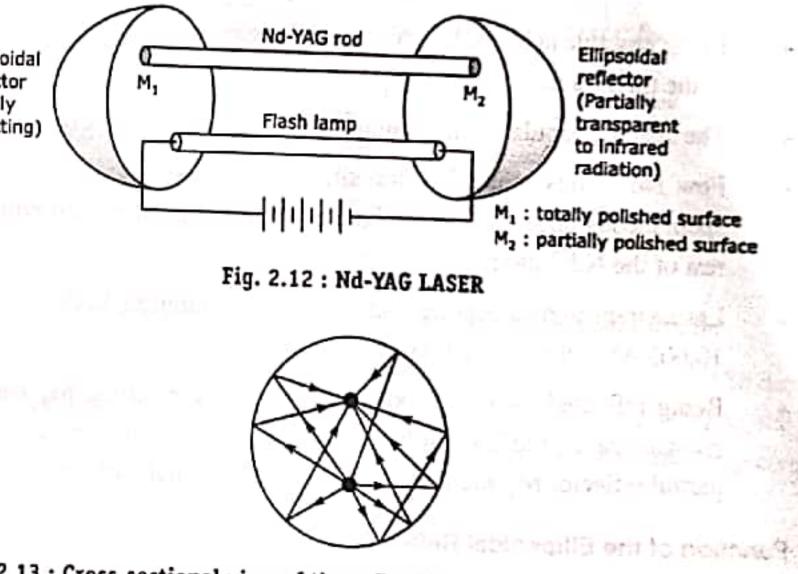
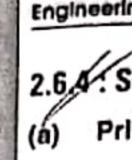
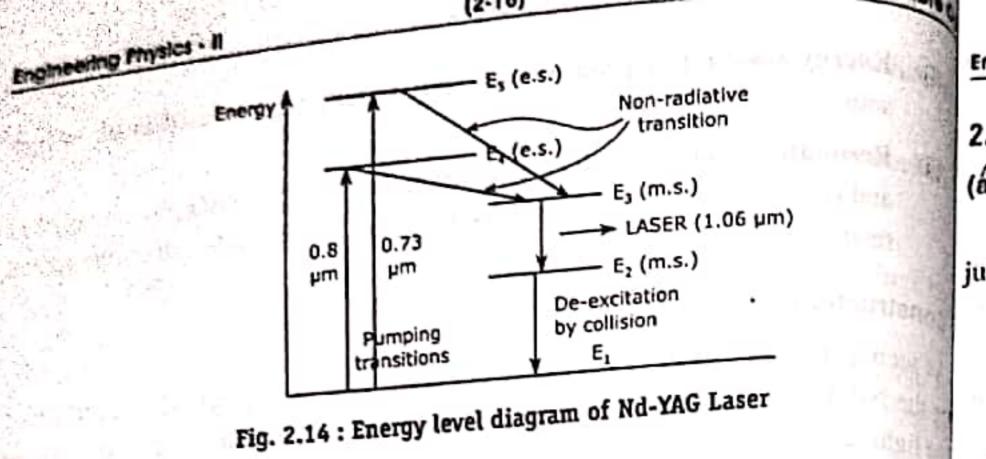





Fig. 2.13 : Cross-sectional view of the reflections in the cylindrical reflector

The working of the Nd-YAG LASER is explained with the help of the energy level diagram, given in Fig. 2.14.

When krypton flash lamp is switched on it emits intense radiation of wavelength range 7000 A° to 8000 A°.





- The Nd<sup>3+</sup> atoms absorb this energy and are pumped to the excited star and E5.
- Being unstable at levels  $E_4$  and  $E_5$ , Nd<sup>3+</sup> atoms make a non radiative trans to the metastable state E3.

The state of population inversion is developed between levels E<sub>3</sub> and E

- Few Nd<sup>3+</sup> ions make fast transition from level E<sub>3</sub> to level E<sub>2 ent</sub> spontaneous photons. These photons initiate the stimulated emission, ٠ rest of the Nd3+ atoms.
- Lasing transition takes place from E3 to E2 level emitting LASER of wave 10,600 A° in the infrared region.
- Being reflected back and forth between the refelectors, M1 and M21 partial reflector M2 and then through the ellipsoidal surface.

#### Function of the Ellipsoidal Reflector (d)

ŝ,

- In between the consecutive flashes of the krypton lamp the Nd-YAG roll ٠ on receiving light through multiple reflections on the ellipsoidal reflect
- The LASER beam is emitted continuously by ND-YAG rod. Hence, ND + LASER works on the continuous wave (CW) mode.

ND-YAG LASER has applications in welding and drilling in hardware int ٠ surgery, etc.

The energy band diagram of this p-n junction is shown in Fig. 2.15. The diode has resonant cavity the LASER beam becomes more intense and comes out heavy doping of holes on the p side and that of electrons on the n side. Hence, the Fermi level, EFp on the p side enters the valence band and that on the n side, EFn enters the conduction band.

# Components (b) (i)

- (ii)
- (iii)

#### Engineering Physics - II

#### 2.6.4 : Semiconductor LASER

#### Principle

Semiconductor diode LASER is formed by a heavily doped forward biased p-n junction diode made up of compound semiconductors.

(2-19)

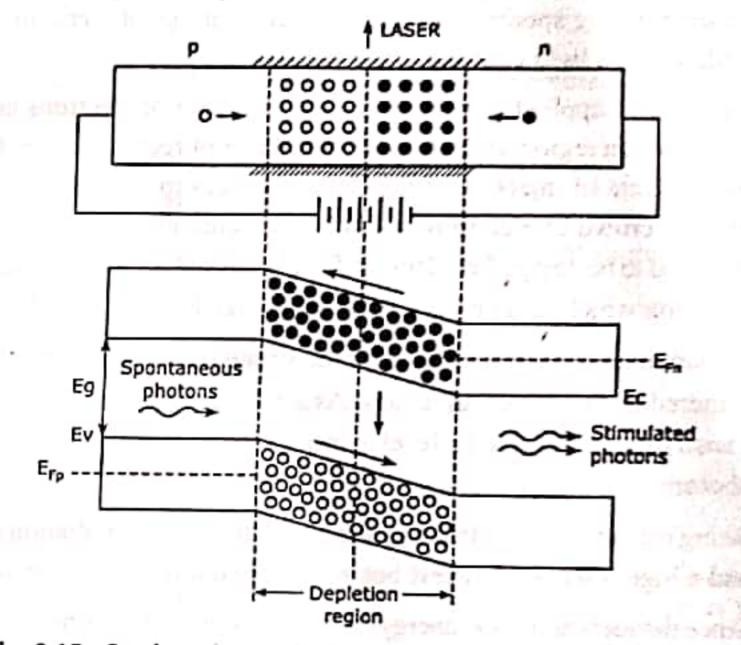



Fig. 2.15 : Semi conductor diode LASER with energy band diagram

The essential components of this LASER source are as follows :

Active medium : The depletion region of the diode act as the active medium, which ideally should be free of charge carriers.

Energy source : An electrical power supply is used as the energy source. In this case the pumping is of direct conversion type.

Resonator cavity : The two open sides of the depletion region are polished to serve as the partial and total reflectors. This serves as the resonator cavity with diode thickness equal to an integral multiple of  $\lambda / 2$ .

#### Working

cering mys

The working of diode LASER depends on the forward current. In to biasing, electrons and holes enter the depletion region.

H32A rankenthiothing

- At low forward current these electrons and holes recombine in the dep region emitting spontaneous photons which are incoherent. In this mod diode act as a light emitting diode (LED).
- With a large applied forward bias a large number of electrons and holes the depletion region. A time comes when rate of recombination is much than the rate of injection of the charge carriers to the depletion region result, a crowd of electrons and holes is accumulated in this region which supposed to be charge free. This artificially created state is the state of popul inversion which is developed between energy levels  $E_c$  and  $E_v$ .
- A spontaneous photon can trigger the stimulated emission of all the electron gathered in the depletion region. As a result all the electrons simultane transit from  $E_c$  level to  $E_v$  level to recombine with the holes releasing comphotons.
- Being reflected within the resonant cavity the emitted radiation is strengt, and a high intensity LASER beam is emitted through the partial reflects

Since the recombination energy is released as the LASER beam, the wavele of the LASER depends on the band gap energy,  $E_g$  of the dioide mathematical Hence,

$$E_g = hv = \frac{hc}{\lambda}$$

and the wavelength of the emitted LASER beam is given by

$$\lambda = \frac{hc}{E_g}$$

- For Ga As, the wavelength of the LASER is 8500 A° which is in the infregion.
- A GaAsP diode LASER operated at liquid nitrogen temperature emits LA of wavelength 6400 A° in the visible region.

|         | A strategy of the |
|---------|-------------------|
| (d)     | Mer               |
|         | Me                |
|         | 1.                |
|         | 2.                |
|         | 3.                |
|         | 4.                |
| t dia a | Den               |
| (0)     | Арр               |
| /       | 1.                |
|         | 2.                |
|         | 3.                |
|         | 4.                |
| (e)     | Cor               |

### rits and Demerits of Laser Diode

rits:

It is simple and compact.

It is highly efficient.

It requires very low power.

It is tunable that means the wavelength of the emitted LASER can be regulated.

merits : It is highly temperature sensitive.

#### plication of diode LASER

Used in optical fibre communications as the light source.

Used in satellite communications.

Used in LASER printers, copiers.

Used in CD players, optical floppy discs.

### mparison of LED and Laser Diode

| Sr. No.              | Parameters                                                                                 | LED                                                | Laser diode                                                                         |
|----------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------|
| 1.<br>2.<br>3.<br>4. | Required forward bias<br>Light emission process<br>Population inversion<br>Resonant cavity | Low<br>Spontaneous<br>Not required<br>Not required | High<br>Stimulated<br>Essential<br>Essential. Opposite<br>sides of the pn           |
| 5.                   | Emitted radiation                                                                          | Incoherent,                                        | junction are made<br>parallel and reflecting<br>to cause feedback<br>Coherent, high |
|                      | Anna 2014 DS<br>Anna 2014 DS<br>Anna 2014 DS                                               | low intensity,<br>monochromatic                    | intensity, mono-<br>chromatic.                                                      |

totor i allorator pri anti

1. 18

Table 2.2

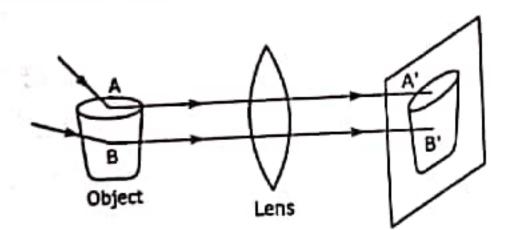
Laser and Fibrer

# 2.7 Applications of LASER : Holography and Other Applications

This is a method of producing a three dimensional image of an object where 2.7.1 Holography

(2-22)

photography a two dimensional image is formed. The technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1960. This is holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1960. This is holography was discovered by Danis Gabor in 1948 but reached the technique of holography was discovered by Danis Gabor in 1960. This is holography was discovered by Danis Gabor in 1960. The technique of holography was discovered by Danis Gabor in 1960. The technique of holography was discovered by Danis Gabor in 1960. The technique of holography was discovered by Danis Gabor in 1960. The technique of holography was discovered b


full potential only after the discovery of LASER in 1960. This is because hology full potential only and and shighly coherent, highly monochromatic, highly intense requires a light wave which is highly coherent, highly only a LASER radiation highly directional, the characteristics possessed by only a LASER radiation.

### Photography

Sec. 1

Engineering Physics -

Photography is the technique of recording a two dimensional image of an dimensional object. The object is illuminated by the incident wave and the wave refifrom the object is called the object wave that carries the information about every point the object as shown in Fig. 2.16. Through the lens the object wave reaches the photogra plate and a point to point (e.g.,  $A \rightarrow A', B \rightarrow B'$ ) recording of the object is done. Thus recorded image is identical to the object. Since the photographic plate is sensitive to intervariations, it records the intensity of the object wave. The intensity ( $\propto$  amplitude<sup>2</sup>)<sub>is a</sub> dimensional physical quantity. Hence, the photographic image is a two dimensional which cannot be viewed from different perspectives.



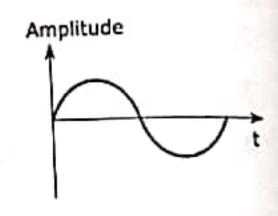



Fig. 2.16 : Photography

#### Holography

In holography, in addition to the two dimensions of intensity, a third dimen the phase of light is also recorded. This is done by using the principle of interference The image produced by holographic technique has three dimensions and one view the image from different perspectives.

The basic technique of holography involves two stages :

#### Engineering Physics - II

#### **Recording**: (i)

- - object.

٠

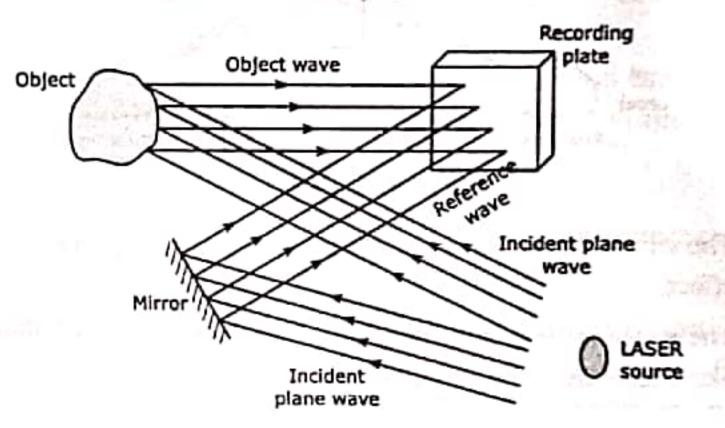
٠

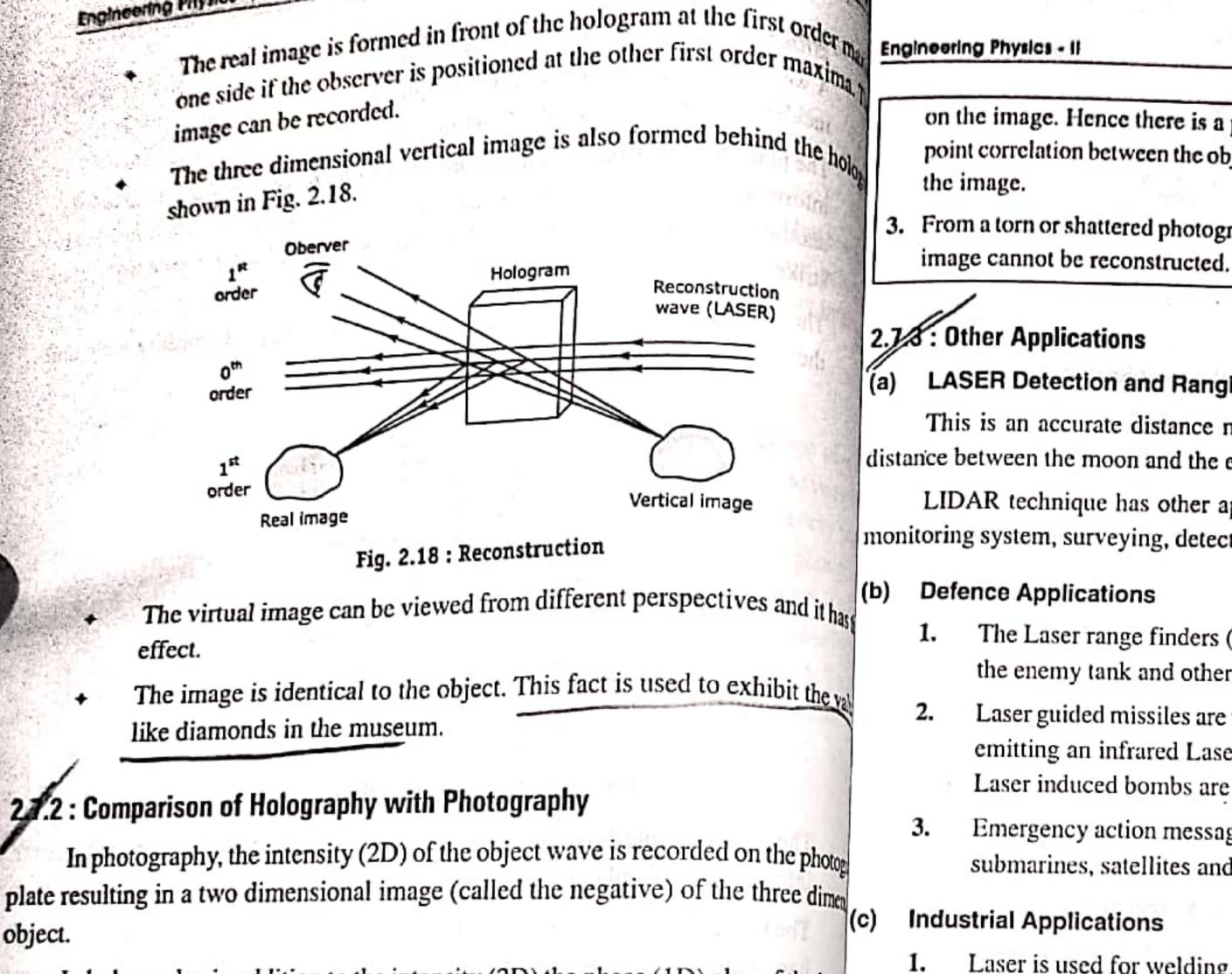
#### **Reconstruction :**

A weak but broad beam of LASER is split into two beams, one is made to be incident on the object and the other on a mirror as shown in Fig. 2.18.

The plane wave reflected from the object, the object wave which carries all the information about the object, reach the photographic plate. Simultaneously another plane wave reflected from the mirror, called the reference wave also strike the photographic plate.

The object wave and the reference wave interfere on the recording plate and the intensity distribution is recorded on it.





Fig. 2.17 : Recording of Hologram

The recorded interference pattern is called the hologram which contains the information not only of the amplitude but also of the phase of the object wave.

The hologram does not have any resemblance with the object but a photograph has. This is because the two interfering waves have very complex phase differences as the object wave is produced from different parts and depths of the object. Every point on the hologram contains the information of the entire

The hologram represents a complex interference pattern with alternate dark and bright fringes in which the information of the object is optically coded.

In this process a reconstruction wave identical with the reference wave is used to illuminate the hologram. If the hologram acts as a diffraction grating the process leads to a real and a virtual image of the object.



In holography, in addition to the intensity (2D) the phase (1D) also of the inter waves are recorded. This results into a three dimensional image (called the hologram three dimensional object.

| Table 2.3                              |          |  |
|----------------------------------------|----------|--|
| Hologram                               | 4.       |  |
| 2. Information of the entire objectise | 5.<br>6. |  |
|                                        |          |  |

| e image. Hence there is a point to<br>correlation between the object and<br>hage. |                                                                                                    |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|
| a torn or shattered photograph the cannot be reconstructed.                       | <ol> <li>The image can be reconstructed from<br/>even a small fragment of the hologram.</li> </ol> |  |

#### 2.7 S: Other Applications

#### LASER Detection and Ranging (LIDAR)

This is an accurate distance measurement technique. The is used to measure the distance between the moon and the earth.

2月1日1日1日1日

有一个生活的能力

LIDAR technique has other applications also. It is used in atmospheric pollution monitoring system, surveying, detection of fog layers, altimeters in aircraft etc.

#### Defence Applications

The Laser range finders (LRF) with Nd-YAG Laser source are used to locate the enemy tank and other targets.

Laser guided missiles are very effective weapons. Here a remote control device emitting an infrared Laser beam is used to guide the missile. Laser guns and Laser induced bombs are also used in defence.

Emergency action messages can be conveyed efficiently and quickly between submarines, satellites and aircrafts by Laser guided communications.

#### Industrial Applications

2.

5.

Laser is used for welding, cutting, drilling, soldering, heat treatment etc.

Laser beam scanning is used in printing industry and in Laser printers.

Laser is used in memory and logic circuits in semiconductor chips in microelectronic industry.

A large amount of data can be stored in a compact disc (CD) using a Laser beam.

Balachar.

Lasers are used in bar code scanners in Library and supermarkets.

Lasers are used in optical fibre communications

### on Applications

- Law intensity Lasers have therapeutic applications
- Lever radiation is efficient in hemorrhage control
- Linkers are tesed in surpers à,
- Leaves aix used in cancer treatment.

#### olographic Applications

- Using Leser hears huge data can be stored on a hologram. Ъ.
- Holograms are used on voter identity cards, credit cards, tickets, original, 2 al antiware programs, certificates to prevent falsification.

# Important Points to Remember

LASER : Light Amplification by Stimulated Emission of Radiation

- A+hv -> A\* Absorption :  $A^* \rightarrow A + hv$ Spontaneous emission :  $A^* + hv \rightarrow A + 2hv$ Stimulated emission  $hv = E_2 - E_1$ with Life time of an atom =  $10^{-3}$  sec in a metastable state 3.
- = 10" sec in an excited state.

Population inversion :  $N_2 > N_1$ : Artificially created state. 4.

- 18: Resonant cavity : Distance between the reflectors =  $n\lambda / 2$ , n = 1, 2, 3 5.
- He Ne Laser : Wavelength : 3.39 µm (infrared)

- 1.15 µm (infrared)
- 7. Nd - YAG Laser : Wavelength : 1.06 µm (infrared)
- Semiconductor LASER Wavelength : 8400 A° (infrared) 8.
- 9. Holography : A two step technique of recording a 3D image using a beam. 13.
  - Recording. (1) (ii) Reconstruction.

Daustiniaiting Structury . If

2

- ٨

- 9
- 10.
- 11.
- 12.
- 13
- 14.
- 15.
- 16.
- 17.

  - - (i) Absorption,
    - (iii) Stimulated emission,

(A) Short Answer Type Questions What is the full form of LASER? State the important characteristics of LASER. Why X rays and LASER are or powerful then ordinary light? Explain dismilated emission of rultation. Define population inversion and its significance. Differentiate between spontaneous emission and stimulated emission Define a metastable state and state its significance. Diagrammatically explain the three level pumping scheme. Diagrammatically explain the four level pumping scheme. What is called the active medium? What are the essential Components of a Laser Source? What is the role of a resonant cavity in a Laser source? Explain the role of a He in He - Ne Laser. Explain the role of the ellipsonial reflector in NE-YAG laser. How can a LED be converted to a Laser diode? What is the fundamental principle of holography? Why does not the hologram resemble the object?

國政性

EXERCISE

Explain the necessary of a three level system for Laser production,

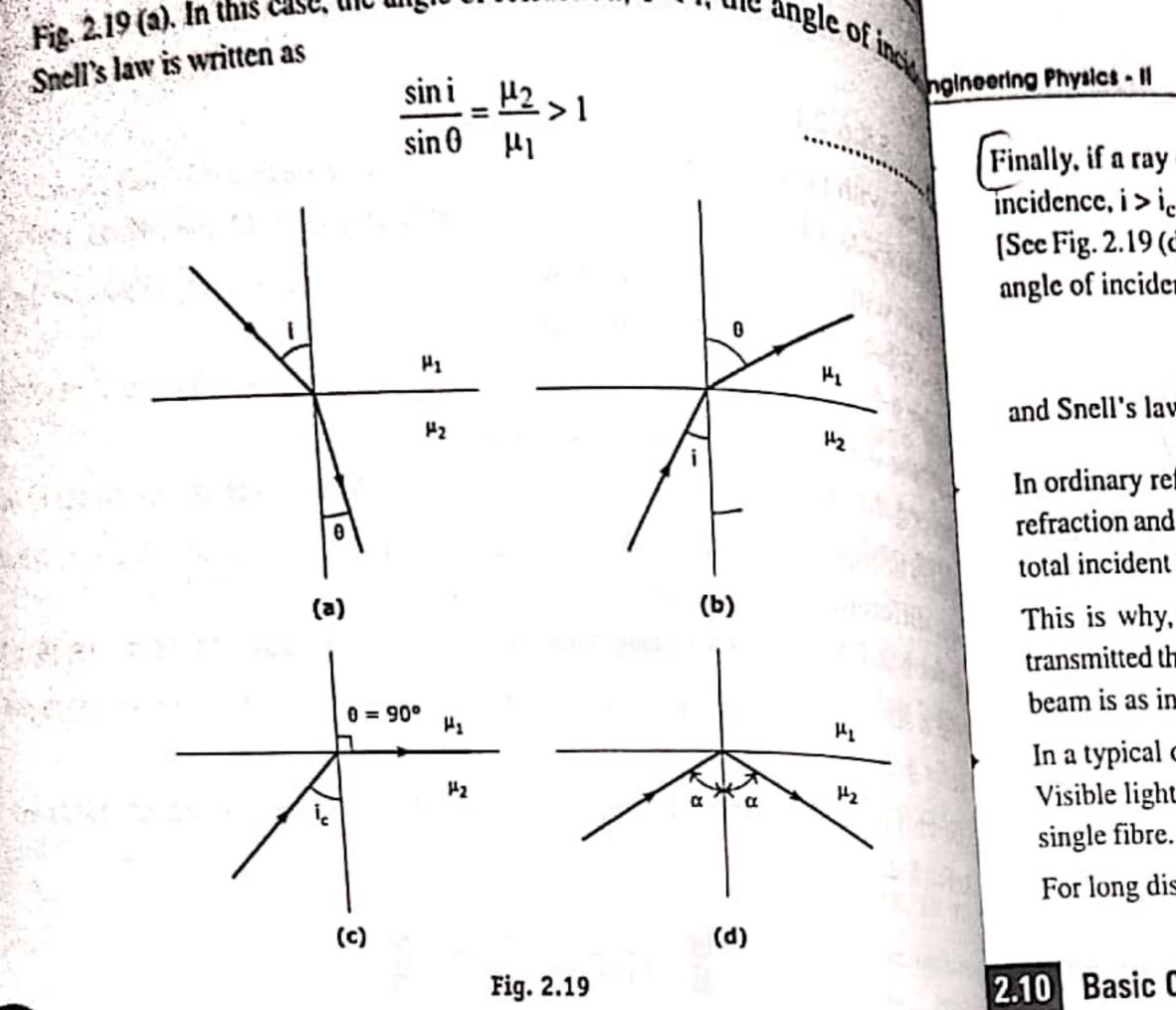
### (B) Long Answer Type Questions

With simple diagrams explain the following terms :

(u) Spontaneous emission,

(iv) Population inversion

What is called pumping and what is its significance in a LASER source. Explain diagrammatically the three level and four level pumping schemes. Describe different types of pumping methods.


With a near energy level diagram explain the construction and working of a He - Ne. laser. State its merits, demerits and applications.

<sup>6328</sup> A° (visible)

| E                 | With a neat energy level diagram explain the construction and working en                                                                                                                                                                 | gineering Physics - II (2-29) Laser and Fibre Optics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>5<br>6<br>7. | Nd - TAG hasen of a semiconductor laser. Explain its working with energy diagram. State its applications.<br>What is holography and how does it differ from photography? Explain the Port of recording and reconstruction of a hologram. | range?<br>[ Refer § 2.6.2 ]<br>[ Refer § 2.6.2 ]<br>[ Refer § 2.6.3 ]<br>[ Ref |
|                   | Previous University Examination Questions With Solutions                                                                                                                                                                                 | [ Refer § 2.6.4 ] (M.U. May 2010; Dec. 2012, 16) (7 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.                | What does LASER stand for? In what respects it differ from an ordinary sound 2<br>(M.U. May 2008, 14, 15, 18; Dec. 2019)                                                                                                                 | Write the difference LED and Laser diode.<br>[ Refer § 2.6.4(e) ] (M.U. May 2012; Nov. 2018) (7 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [2                | [ Refer § 2.1 ]<br>Write full form of LASER. Explain main three processes involved in production<br>LASER with appropriate diagrams. (M.U. Dec 2006, 12; May 2009)                                                                       | is the difference between holography and photography?<br>[Refer § 2.7.1] (M.U. May 2009, 10, 13, 14, 17; Dec. 2011, 13, 15, 17, 19) (8 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0                 | [Refer § 2.1, 2.2.1]<br>Differentiate between spontaneous emission and stimulated emission process relation.                                                                                                                             | [ Refer § 2.7.1 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A                 | [Refer § 2.2.3] (M.U. May 2008, 12, 17; Nov. 2018; Dec 2010, 13, 14, 15, 19)                                                                                                                                                             | [Refer § 2.7.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (4.)              | What is a population inversion state? Explain its significance in the operation<br>LASER. (M.U. May 2013, 17; Dec. 2016)()<br>[ Refer § 2.4.1 ]                                                                                          | FIBRE OPTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.                | What is pumping in LASER? Give the types of pumping.                                                                                                                                                                                     | B Introduction<br>Fibre optics is a technology in which information is transmitted from one place to<br>other with the help of an optical signal propagating through optical fibres. Optical fibres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.                | Explain the terms : (M.U. Dec. 2008, 09, 10, 17)                                                                                                                                                                                         | used to transmit right signals over long distances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                   | <ul> <li>(i) Spontaneous emission, (ii) Stimulated emission,</li> <li>(iii) Metastable state, (iv) Population inversion, (v) Pumping.</li> <li>[Refer § 2.2.1, 2.4.1, 2.4.2]</li> </ul>                                                  | An optical fibre is defined as a dielectric waveguide that confines light energy<br>within its surface and guides it in a direction parallel to its axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.                | What is resonant cavity in the operation of a LASER? (M.U. May 2012)                                                                                                                                                                     | 9 Principle of Fibre Optics : Total Internal Reflection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | [Refer § 2.4.4]                                                                                                                                                                                                                          | The optical beam is made to travel through the optical fibre not by the simple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8.                | With neat energy level diagram describe the construction of a He - Ne Laser. We are its merits and demerits?                                                                                                                             | or transmission out by the principle of total internal reflection.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | [Refer § 2.6.2 ] (M.U. May 2007, 08, 13, 15, 18; Nov. 2018; Dec. 2007, 14, 19)                                                                                                                                                           | Whenever a ray of light comes from a rarer medium (of refractive index $\mu_1$ ) and enters a denser medium (of r.i., $\mu_2 > \mu_1$ ) it bends towards the normal as shown in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

х.,

1.1



On the otherhand, if a ray of light falls on a denser surface after passing the rarer medium, the refracted ray bends away from the normal on the inter [Fig. 2.19 (b)] In this case

θ>i

and Snell's law becomes

$$\frac{\sin i}{\sin \theta} = \frac{\mu_1}{\mu_2} < 1$$

Now, if the angle of incidence, i is gradually increased, the angle of refraction, increases and a time comes when 0 becomes equal to 90° [See Fig. 2.19 (c)] angle of incidence for  $\theta = 90^\circ$  is called the *critical angle*,  $i_c$ . In this case, Snell's is written as

$$\sin i_c = \frac{\mu_1}{\mu_2} <$$

... (2.10-d)

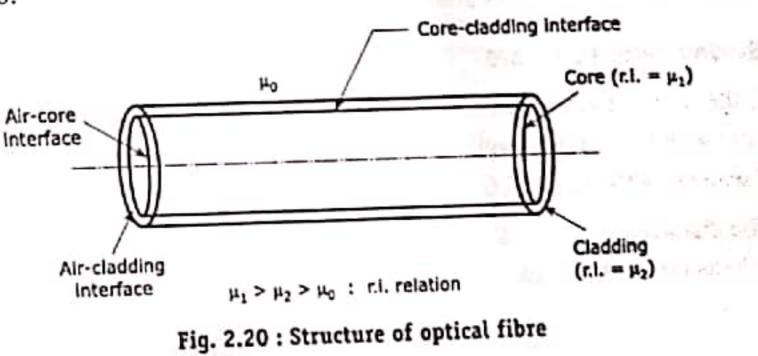
Finally, if a ray of light in denser medium is incident on the interface at an angle of incidence, i > ic, the critical angle the light is reflected back into the denser medium [See Fig. 2.19 (d)]. This reflection is termed as total internal reflection. The minimum angle of incidence for total internal reflection is

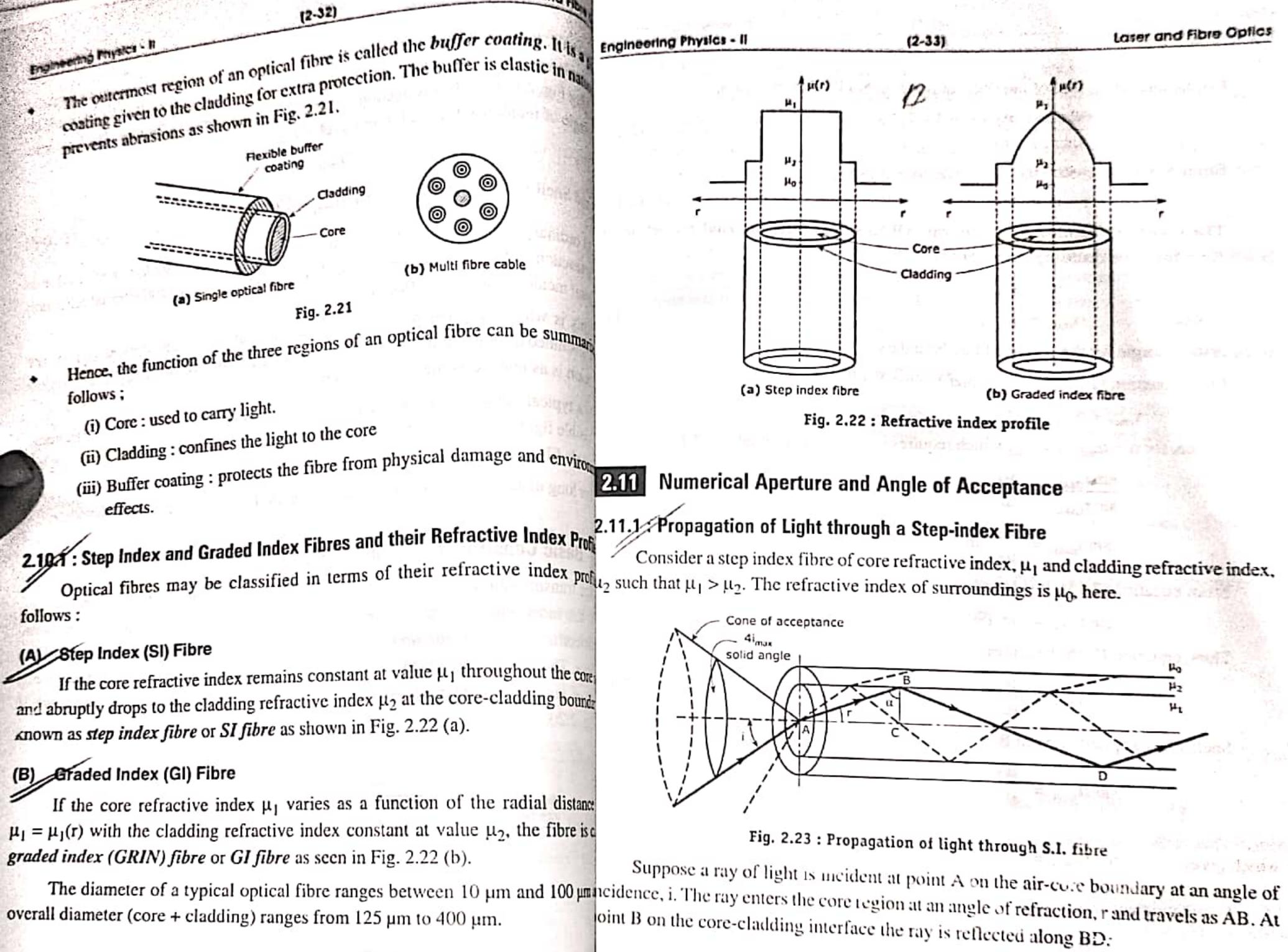
$$\alpha_{\min} = i_c$$

 $\sin \alpha_{\min} = \frac{\mu_1}{\mu_2}$ 

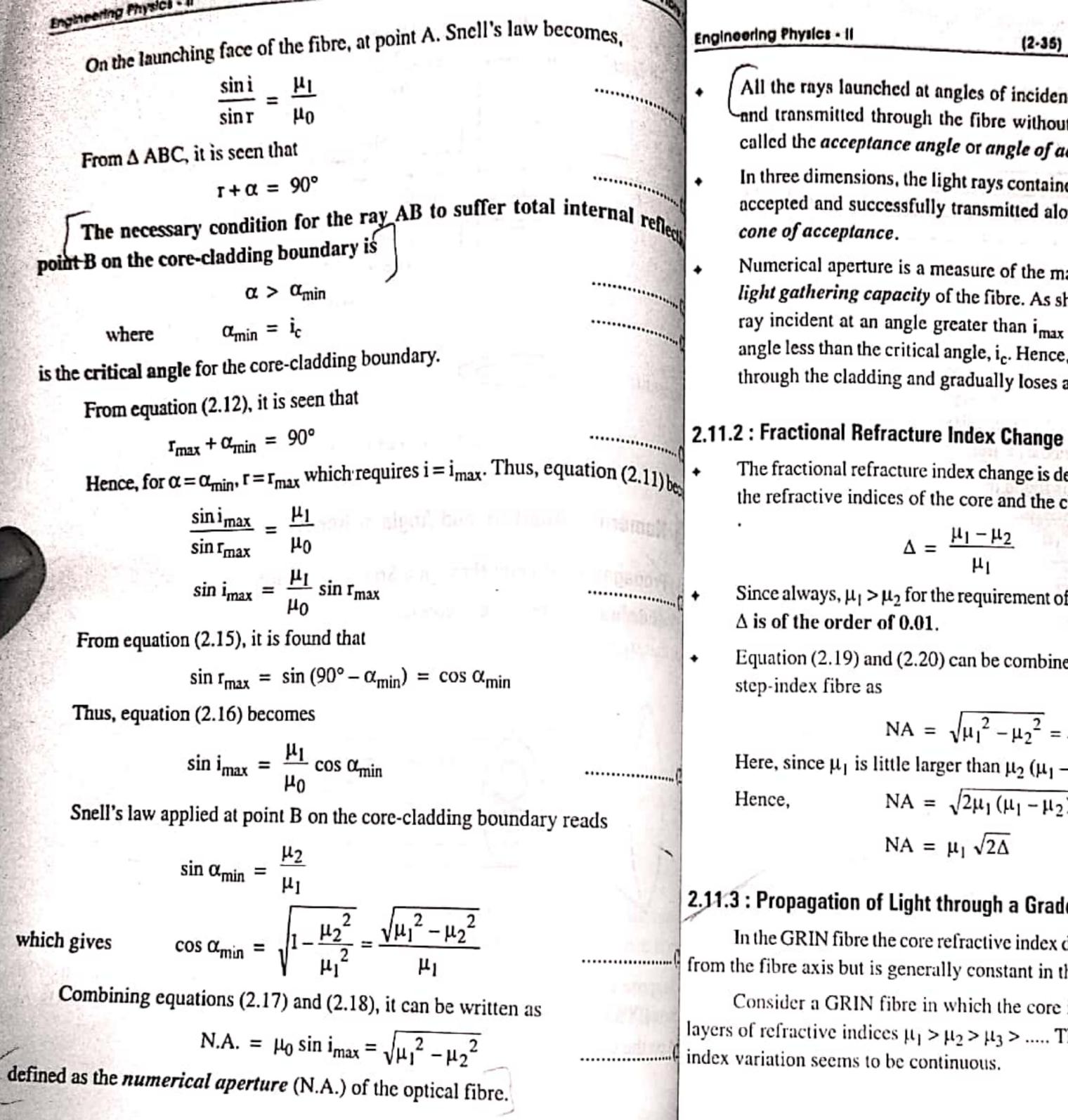
and Snell's law becomes

In ordinary reflection 4% of the incident energy is absorbed by the interface due to refraction and absorption at every incidence but in the case of total internal reflection total incident energy is reflected back to the medium.


This is why, using the principle of total internal reflection, optical signals are transmitted through optical fibres without any significant loss of energy. The emergent beam is as intense as the incident beam.


In a typical optical fibre about 2 m long, a ray undergoes about 45,000 reflections. Visible light can be transmitted successfully over a length of about 50 m through a

For long distance transmission couplers are used to join several fibre pieces.


### **Basic Construction of Optical Fibres**

The transmission properties of an optical fibre depends on its structural properties. In the most widely accepted structure, an optical fibre consists of an inner solid dielectric cylinder made up of high-silica-content glass known as the core of the fibre. The core is surrounded by a solid cylindrical dielectric shell, generally made up of law-silica-content glass or plastic. This is known as cladding as shown in NO THE POR Fig. 2.20.





defined as the murrer acted and



All the rays launched at angles of incidence i < imax are totally internally reflected and transmitted through the fibre without any loss of intensity. The angle imax is called the acceptance angle or angle of acceptance of a fibre.

In three dimensions, the light rays contained within the cone of solid angle 4imax are accepted and successfully transmitted along the fibre. Thus, the cone is called the cone of acceptance.

Numerical aperture is a measure of the maximum angle of incidence, imax, i.e., the light gathering capacity of the fibre. As shown in Fig. 2.23, (with the dotted line), a ray incident at an angle greater than imax strikes the core-cladding interface on an angle less than the critical angle, ic. Hence, at every incidence it is partially refracted through the cladding and gradually loses all its optical energy.

The fractional refracture index change is defined as the fractional difference between the refractive indices of the core and the cladding. It is expressed as

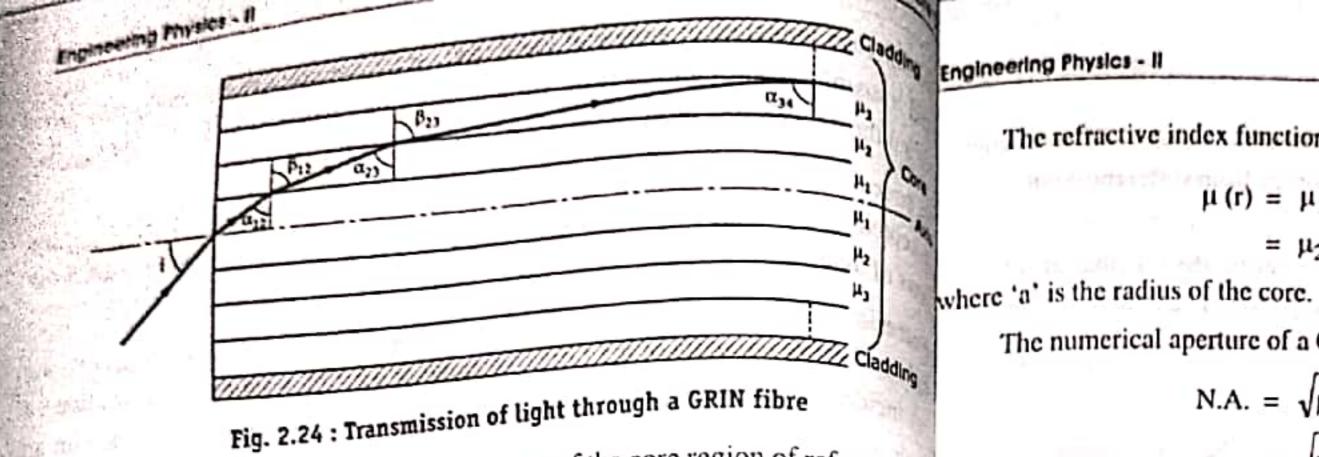
$$\Delta = \frac{\mu_1 - \mu_2}{\mu_1} \qquad (2.20)$$

Since always,  $\mu_1 > \mu_2$  for the requirement of total internal reflection,  $\Delta \ll 1$ . Typically,  $\Delta$  is of the order of 0.01.

Equation (2.19) and (2.20) can be combined to express the numerical aperture of the

NA = 
$$\sqrt{\mu_1^2 - \mu_2^2} = \sqrt{(\mu_1 + \mu_2)(\mu_1 - \mu_2)}$$

Here, since  $\mu_1$  is little larger than  $\mu_2 (\mu_1 - \mu_2)$  is small and  $(\mu_1 + \mu_2) \equiv 2\mu_1$ .


$$NA = \sqrt{2\mu_1 (\mu_1 - \mu_2)} = \sqrt{2\mu_1 \Delta \mu_1}$$
$$NA = \mu_1 \sqrt{2\Delta}$$

..... (2.21)

# 2.11.3 : Propagation of Light through a Graded Index Fibre (GRIN Fibre)

In the GRIN fibre the core refractive index decreases continuously with radial distance from the fibre axis but is generally constant in the cladding.

Consider a GRIN fibre in which the core is imagined to be divided into individual layers of refractive indices  $\mu_1 > \mu_2 > \mu_3 > \dots$ . These layers are so then that the refractive index variation seems to be continuous.



Let a ray of light enter the innermost layer of the core region of refractive in and strike the layer 1-layer 2 interface at an angle  $\alpha_{12}$ . As  $\mu_2 < \mu_1$ , the ray is the and strike the layer 1-layer 2 may be an angle  $\beta_{12} > \alpha_{12}$ . Then it strikes the layer 2-layer 3 interface at an angle  $\beta_{12} > \alpha_{12}$ . is refracted through an angle  $\beta_{23} > a_{23}$  since  $\mu_3 < \mu_2$ .

Applying Snell's law at point A, it is found that

$$\frac{\sin \alpha_{12}}{\sin \beta_{12}} = \frac{\mu_2}{\mu_1}$$
  

$$\therefore \qquad \mu_1 \sin \alpha_{12} = \mu_2 \sin \beta_{12}$$
  
Similarly, at point B Snell's law gives  

$$\frac{\sin \alpha_{23}}{\sin \beta_{12}} = \frac{\mu_2}{\mu_2}$$
  

$$\mu_2 \sin \alpha_{23} = \mu_3 \sin \beta_{23}$$

From Fig. 2.24, it is found that

and

 $\beta_{23} = \alpha_{34}$  (alternate)

 $\beta_{12} = \alpha_{23}$  (alternate)

Hence, equations (2.22), (2.23) and (2.24) being combined becomes

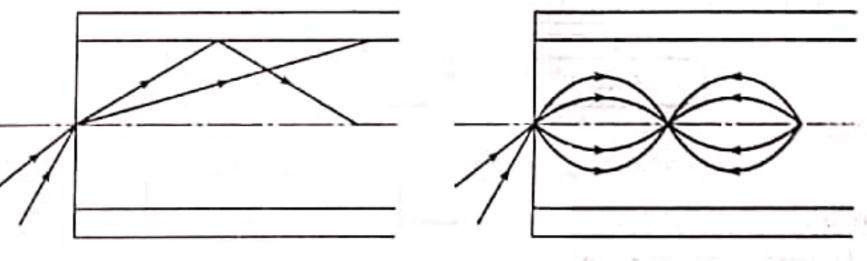
 $\mu_1 \sin \alpha_{12} = \mu_2 \sin \alpha_{23} = \mu_3 \sin \alpha_{34}$ 

 $\mu$  (r) sin  $\alpha$  (r) = constant

This shows that in the core region as  $\mu$  decreases with r,  $\alpha$  (r) increases m reaches the critical angle ic for any interface. Hence, the ray gradually bends toward axis until it suffers total internal reflection at some interface of the core region. The never reaches the core-cladding boundary.

Assuming  $\mu_1 + \mu_2$ 

\*\*\*\*\*\*\*\*\*\*


......

- the second by

#### 2.11.4 : Comparison of Propagation of Light through Step-index and Graded Index Fibres

The paths travelled by a ray in a SI and in a GI fibres are completely different.

In a step index fibre the ray changes its direction of motion abruptly at each total internal reflection whereas in a GI fibre the direction changes gradually by succrefraction between the total internal reflections.



The refractive index function of a GRIN fibre is given by

$$\mu(\mathbf{r}) = \mu_1 \sqrt{1 - 2\Delta (r^2/a^2)^2}, \quad \mathbf{r} < \mathbf{a}, \text{ inside core}$$
$$= \mu_2, \qquad \mathbf{r} > \mathbf{a}, \text{ in cladding}$$

The numerical aperture of a GRIN fibre is written as

(a) S.I. Fibre

(b) G.I. Fibre

Fig. 2.25 : Propagation of light

(2-37)

Engineering Physics In a SI fibre as shown in Fig. 2.25 (a) different rays launched at different In a SI fibre as shown in Lie. follow different paths and emerges at different times from different points follow different paths and emerges at different times from different points output end. This causes pulse dispersion.

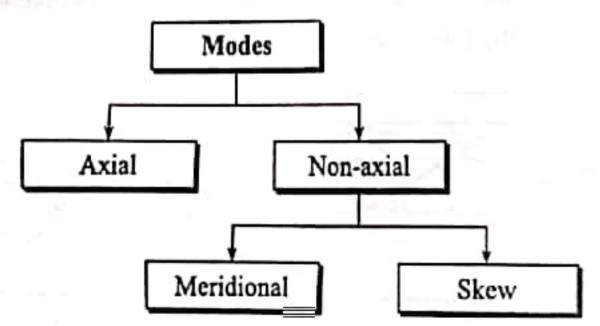
output chu. Thus is seen in Fig. 2.25 (b) rays entering the GI fibre at dia on the otherhand, as seen in Fig. 2.25 (b) rays entering the GI fibre at dia On the othernand, as seen in the same time period. Thus, there is an angles follow different paths with the same time period. Thus, there is an self-focussing of the rays and pulse dispersion is very small.

# Mode of Propagation

2.12 In simple context, a mode of propagation in an optical fibre is an allowed followed by more than one ray.

Even in a perfectly constructed optical fibre it is seen that all the rays la through the cone of acceptance are not guided to the output end.

This happens because while travelling through the optical fibre the rays in with each other. Some groups of rays interfere constructively and are inter while other groups of rays interfere destructively and fade out.


Every group of rays that are intensified follow a single path called a mode.

As a result, the fibre allows only a few selected paths i.e., a finite number of

The number of allowed modes depends on the ratio d /  $\lambda$  where 'd' is the diame the core and  $\lambda$  is the wavelength of the guided light.

#### 2.12.1 : Classification of Modes

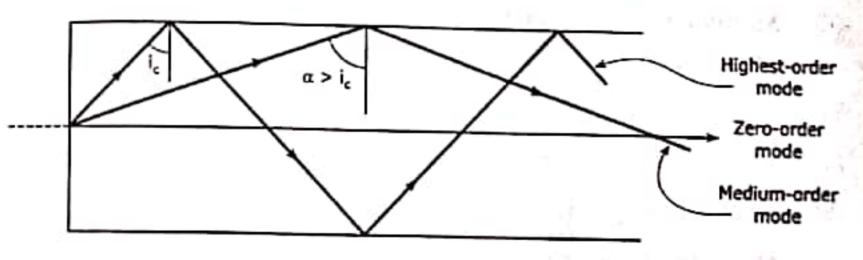
The modes can be classified as follows :



Different modes are explained as follows :

Axial modes : These are the modes propagating along or parallel to the

#### Engineering Physics - II


٠

The modes are illustrated in Fig. 2.26.

# 2.12.2 : Maximum Number of Allowed Modes (N) and V Number

In an optical fibre of uniform structure

- ٠
- ٠



- ٠
- ٠

(2-39)

Non-axial modes : These are the modes that undergo successive total internal

Meridional modes : These modes follow zigzag path and repeatedly cross the axis at regular intervals.

Skew modes : These modes are helical about the axis but never cross the axis.

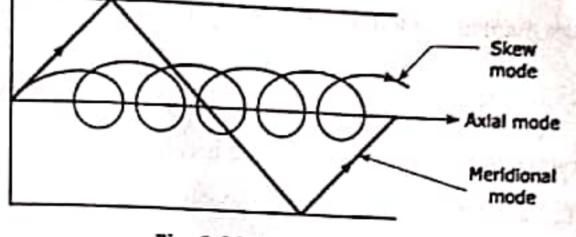



Fig. 2.26 : Types of modes

The axial modes are called zero order modes.

The modes that propagate with  $\alpha = i_c$  (Fig. 2.27) are the highest order modes.

The modes with  $\alpha > i_c$  are the medium order modes.



The zero order mode is the fastest mode and the highest order mode is the slowest mode. Hence, they reach the output end at different times.

The number of modes that an optical fibre can support is determined by its V number also called its normalized frequency. It is given by

where  $\lambda$  is the wavelength of the guided light,

'a' is the core radius, and

'd' is the core diameter. The maximum number of modes supported by a step index fibre is 

The maximum number of modes supported by a graded index fibre is

 $N_m = -$ 

The wavelength corresponding to V = 2.405 is called the *cut-off wavelength* Every fibre has a specific V number and a specific cut-off wavelength. For V < 2.405, the fibre can support only one mode *i.e.*, a single mode fibre For V > 2.405, the fibre can support many modes *i.e.*, a multimode fibre.

# 12.3 : Classification of Optical Fibres

(H)

According to the number of propagating modes optical fibres are classified as Single Mode Fibre (SMF) : A single mode fibre has a small core dian

and can support only one mode of propagation i.e., the zero order mode 2.12.4 : Comparison of Different Types of Optical Fibres Multimode Fibre (MMF) : Multimode fibres have larger core diament

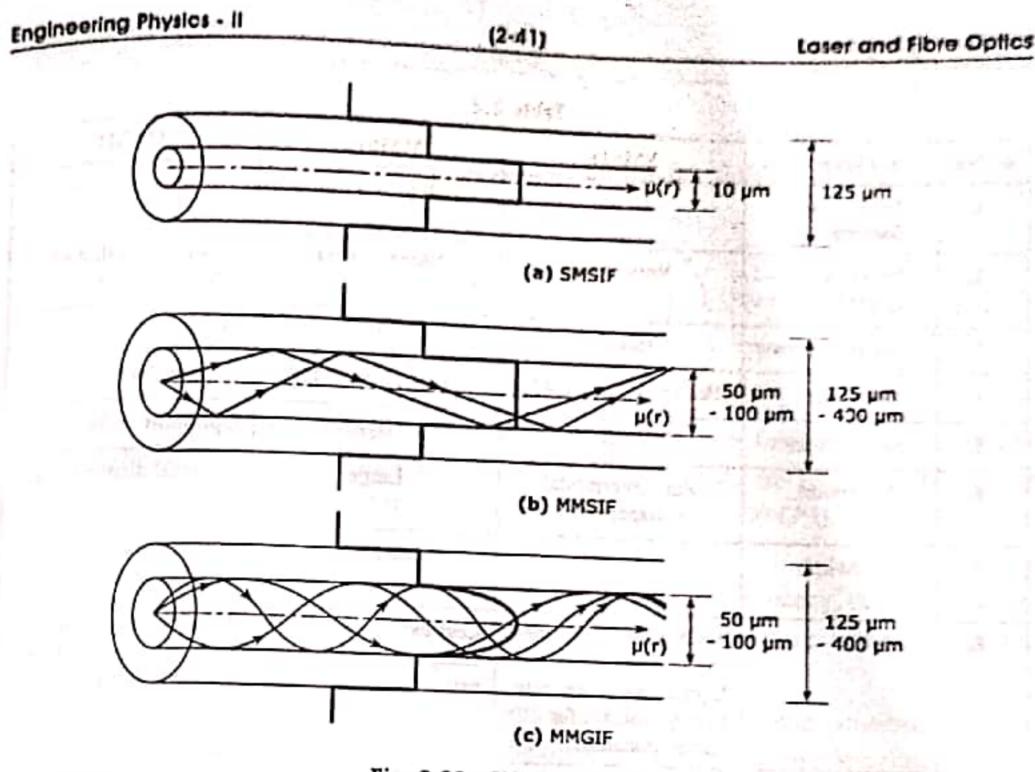
compared to SMF and can allow a number of modes.

The Overall Classification of Optical Fibres and as follows :

- Single mode step-index fibre (SMSIF) (a)
- Multimode step-index fibre (MMSIF) (b)
- Multimode graded index fibre (MMGIF) (c)

The single mode graded index fibre (SMGIF) is not possible to manufacture be the graduation of the refractive index is not possible in a narrow core.

The structural and transmission characteristics of these three types of optical is shown in Fig. 2.28.


The single mode step index fibre (SMSIF), the multimode step index fibre (MMSIF) and the multimode graded index fibre (MMGIF) are compared as shown in Table 2.2.

Optical fibres have wide range of applications. They have many advantages over their metallic equivalents due to their various merits listed below.

- 1.
- 2.

3.

4.



#### Fig. 2.28 : SMF and MMF

### 200 Applications of Optical Fibres

These are cheaper than metallic conductors.

These are smaller in size, lighter in weight and more flexible yet strong as compared to conducting materials.

Optical fibres are made up of dielectric materials. So these are not affected by high voltage lines. 

In optical fibres, information is carried by photons through dielectric media. Hence it is not affected by external electric of magnetic fields. Also the information is transmitted in a very secured way.

| Table | 2,2 |
|-------|-----|
|-------|-----|

| Enginee | HIND PHYSICS    | Table                                                                                                                  |                                                                                                                     | 1<br>1 1 1                                                                 |  |
|---------|-----------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
|         |                 | ONE                                                                                                                    | MMSIF                                                                                                               | MMC                                                                        |  |
| Sr. Ne. | Characteristics | SMSIF                                                                                                                  | 50 to 100 µm                                                                                                        | 50 to 10                                                                   |  |
| I.      | Typical core    | 10 µm                                                                                                                  |                                                                                                                     |                                                                            |  |
|         | diameter        | Very small                                                                                                             | Large (< 0.5)                                                                                                       | Smaller than<br>MMSIF                                                      |  |
| 2       | Numerical       |                                                                                                                        |                                                                                                                     |                                                                            |  |
| 1.      | aperture        | Only one                                                                                                               | Many                                                                                                                | Many                                                                       |  |
| 3.      | No. of modes    | Between 0 and 2.475                                                                                                    | Greater than 2.475                                                                                                  | Greater than                                                               |  |
| 4.      | V-number        | Least                                                                                                                  | High                                                                                                                | Optimum                                                                    |  |
| 5.      | Attenuation     |                                                                                                                        | Large                                                                                                               | Material disp<br>dominant                                                  |  |
| 6.      | Dispersion      | Zero intermodal<br>dispersion                                                                                          |                                                                                                                     | 170                                                                        |  |
| 7.      | Bandwidth       | > 3 GHz-km                                                                                                             | < 200 MHz-m                                                                                                         | 200 MHz-km<br>- 300 Hz - km                                                |  |
| 8.      | Merits          | No degradation of the<br>information signal<br>high data transfer rate,<br>highly suitable for<br>communication        | Less expensive Laun-<br>ching of light is easier<br>using LED or Laser<br>sources. Coupling of<br>fibres is easier. | Launching of<br>casy by using<br>Laser sources                             |  |
| 9.      | Demerits        | Expensive; Launching<br>of light is difficult. A<br>Laser source is nece-<br>ssary. Coupling of<br>fibre is difficult. | Signal degradation<br>occurs. Less suitable<br>for communications.                                                  | Most expension its complex second complex second the light sour difficult. |  |
| 10.     | Applications    | Under-water cables                                                                                                     | Data links                                                                                                          | Telephone lin                                                              |  |

Information

Source

٠

Calculate the numerical aperture of an optical fibre with core refractive index 1.55 and cladding refractive index 1.53.

- Information carrying capacity of an optical fibre is very large as compared 5. metallic cable.
- Due to the transmission by total internal reflection the loss of energy the 6. optical fibres is very small.

### 2.13.1 : Fibre Optic Communication System

- Communication may be defined as the transfer of information from one plan another. For this a communication system is necessary.
- 2.14 Within a communication system the information signal is superimposed on an + wave and the carrier wave is modulated by the information signal. The mode Problem 1 carrier wave is then transmitted through the communication channel to the destin where it is received and demodulated to extract the original information.

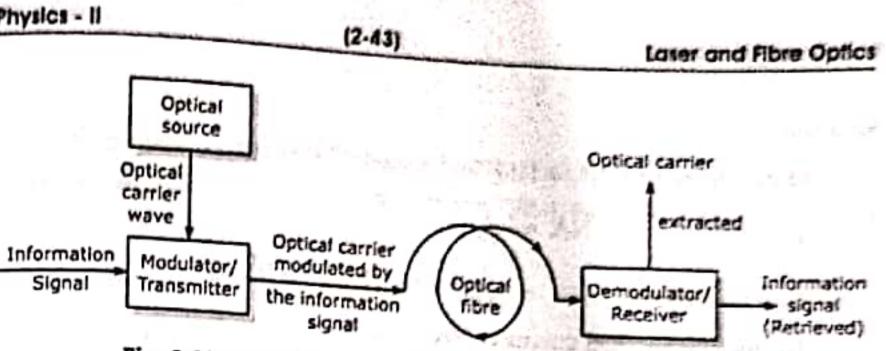



Fig. 2.29 : Optical fibre communication system

The carrier waves are electromagnetic waves . Earlier there has been a frequent use of either the radio waves (frequency ~ 3 kHz to 300 GHz), the microwaves (frequency ~ 3 GHz to 30 GHz) or the millimeter waves (frequency ~ 30 GHz to 300 GHz), as a carrier wave.

It has been found theoretically that the greater the carrier frequency, the larger is the transmission bandwidth and thus the information carrying capacity of the communication system.

After the advent of laser in 1960, communication has become possible with an electromagnetic carrier selected from the optical range of frequencies.

At higher optical frequencies (~ 10<sup>15</sup> Hz) a large frequency bandwidth (~ 10<sup>4</sup> times the bandwidth available with a microwave carrier signal) and a high information carrying capacity (~ 10<sup>5</sup> times the information carrying capacity of a microwave carrier signal) are available.

However, light energy gets dissipated in open atmosphere by inverse square law,

$$I \propto \frac{1}{d^2}$$

where 'I' is the intensity of the light beam and 'd' is the distance travelled.

This dissipation is caused by the diffraction and scattering of light by dust particles, water vapour etc. and due to absorption in the medium.

Hence, to transmit an optical carrier signal over a long distance a guiding channel is required. This is done by sending an optical beam or pulse through an optical fibre.

#### Solved Problems

Solution : Data :  $\mu_1 = 1.55$ ,  $\mu_2 = 1.53$ 

Formula:  $NA = \sqrt{\mu_1^2 - \mu_2^2}$ Calculations:  $NA = \sqrt{(1.55)^2 - (1.53)^2} = 0.248$ 

Result : Numerical aperture, NA = 0.248. The second second

### Problem 2

Calculate the numerical aperture and hence the acceptance angle for an optical Given that the refractive indices of the core and the cladding are 1.45 and 1.40 respective (M.U. May 2000, D (M.U. May 2009; Dec. 2012)

#### Solution :

Data :  $\mu_1 = 1.45, \ \mu_2 = 1.40$ **Formula:** NA =  $\sin i_{max} = \sqrt{\mu_1^2 - \mu_2^2}$ **Calculations:** NA =  $\sqrt{(1.45)^2 - (1.40)^2} = 0.3775$  $i_{max} = sin^{-1} (NA) = sin^{-1} (0.1425)$  $i_{max} = 22.17^{\circ}$ Result: Numerical aperture, NA = 0.3775 Acceptance angle, imax = 22.17°

#### Problem 3

A fibre cable has an acceptance angle of 30° and core refractive index of 1.4. Cal (M.U. Nov. 2016; May 2018); the refractive index of cladding.

Solution : ,

**Data**:  $i_{max} = 30^{\circ}$ ,  $\mu_1 = 1.4$ ,  $\mu_2 = ?$  $\sin i_{\text{max}} = \sqrt{\mu_1^2 - \mu_2^2}$ Formula :  $\mu_2 = {\mu_1}^2 - (\sin i_{\max})^2$ Calculations :  $= (1.4)^2 - (\sin 30^\circ)^2$  $\mu_2 = (1.4)^2 - (0.5)^2 = 1.71$ 

Result : Refractive index of cladding = 1.71.

### Engineering Physics - II

# Problem 4 Solution : Data : Form

Calcu

*.*••

Problem 5

Solution : Data : Formu

Calcul

Result

Loser and Fibre Optics

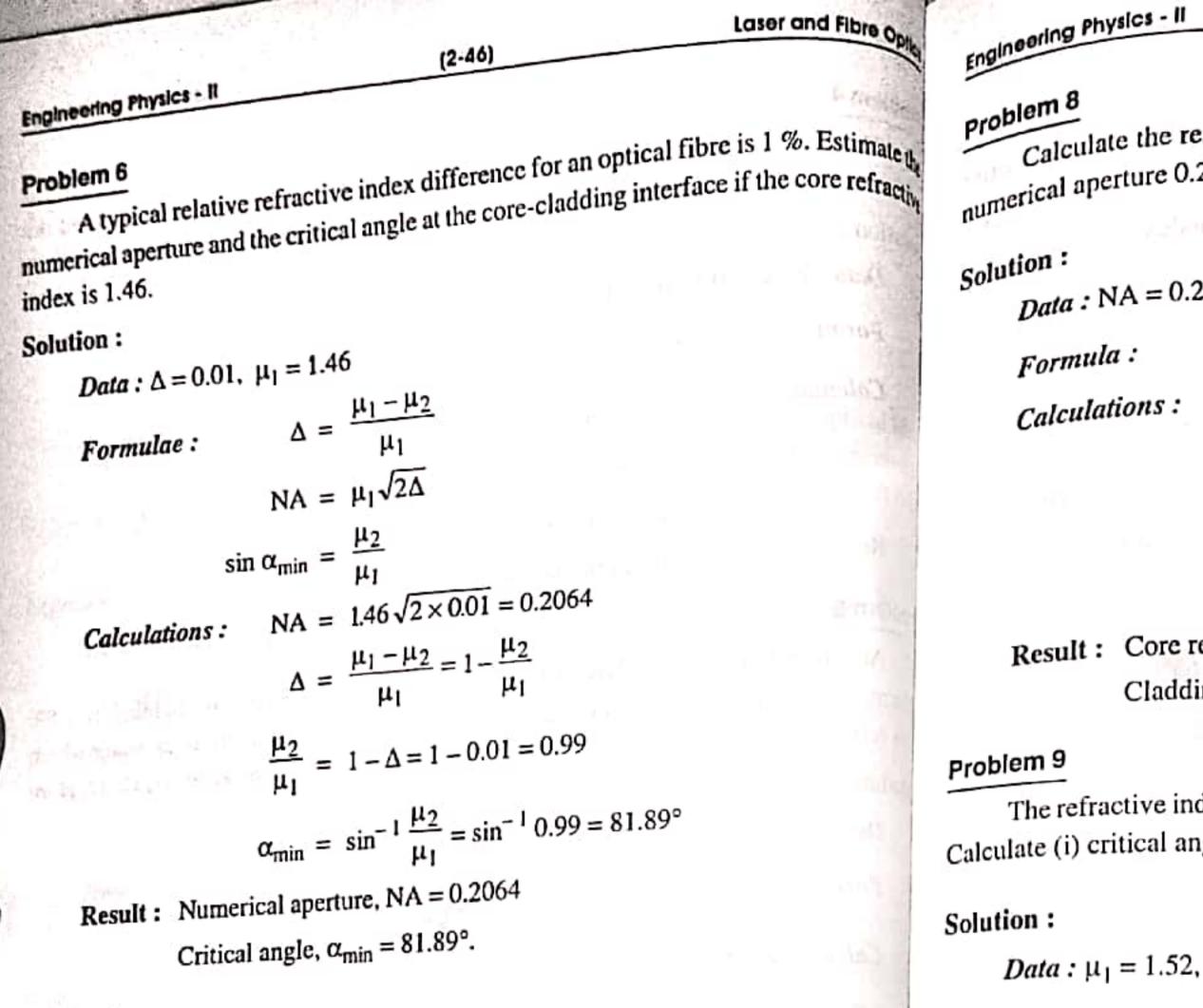
rebany wh

CHERNEL SALES

THE REPORT OF STREET

The N.A. of an optical fibre is 0.5 and the core refractive index is 1.54. Find the refractive index of cladding. (M.U. Nov. 2014; May 2017) (3 m)

: N.A. = 0.5, 
$$\mu_1 = 1.54$$
  
ula : N.A. =  $\sqrt{\mu_1^2 - \mu_2^2}$   
lations :  $\mu_2 = \sqrt{\mu_1^2 - (N.A.)^2}$   
 $= \sqrt{(1.54)^2 - (0.5)^2}$   
 $\mu_2 = 1.456$ 


Result : Refractive index of cladding = 1.456.

An optical fibre has a NA of 0.20 and the refractive index of cladding is 1.59. Determine the core refractive index and the acceptance angle for the fibre in water which has a refractive index of 1.33. 0-1-1-(M.U. May 2010, 11, 13, 17) (5 m)

-a 14 a.

NA = 0.20, 
$$\mu_2 = 1.59$$
,  $\mu_0 = 1.33$   
tha:  
NA =  $\mu_0 \sin i_{max} = \sqrt{\mu_1^2 - \mu_2^2}$   
ations:  
NA =  $\sqrt{\mu_1^2 - \mu_2^2}$   
 $\mu_1 = \sqrt{(NA)^2 + \mu_2^2}$   
 $= \sqrt{(0.2)^2 + (1.59)^2}$   
 $\mu_1 = 1.6025$   
 $i_{max} = \sin^{-1} \frac{NA}{\mu_0} = \sin^{-1} \frac{0.2}{1.33}$   
 $i_{max} = 8.64^\circ$   
: Core refractive index,  $\mu_1 = 1.6025$   
Acceptance angle,  $i_{max} = 8.64^\circ$ .

(2-45)



#### Problem 7

A glass material A with which an optical fibre is made has a refractive index of 15 This material is clad with another material B whose refractive index is 1.51. The light the fibre is launched from air. Calculate the numerical aperture of the fibre.

(M.U. May 2013; Nov. 2018) (3:

Solution :

*Data* :  $\mu_0 = 1.0$ ,  $\mu_1 = 1.55$ ,  $\mu_2 = 1.51$  $NA = \sqrt{\mu_1^2 - \mu_2^2}$ Formula :  $NA = \sqrt{(1.55)^2 - (1.51)^2} = 0.349$ Calculations : Result: Numerical aperture, NA = 0.349.

(2-47)

Laser and Fibre Optics

Calculate the refractive index of the core and the cladding of an optical fibre with numerical aperture 0.22 and fractional refractive index change 0.012.

(M.U. Dec. 2017) (3 m)

marie des

Data : NA = 0.22,  $\Delta = 0.012$ .

$$NA = \sqrt{\mu_1^2 - \mu_2^2} = \mu_1 \sqrt{2\Delta}$$
$$NA = \mu_1 \sqrt{2\Delta}$$

in the first of the second

$$\mu_{1} = \frac{NA}{\sqrt{2\Delta}} = \frac{0.22}{\sqrt{2 \times 0.012}} = 1.42$$

$$NA = \sqrt{\mu_{1}^{2} - \mu_{2}^{2}}$$

$$\mu_{2} = \sqrt{\mu_{1}^{2} - (NA)^{2}} = \sqrt{(1.42)^{2} - (0.22)^{2}} = 1.419$$

Result : Core refractive index,  $\mu_1 = 1.42$ . Cladding refractive index,  $\mu_2 = 1.419$ .

The refractive index of core and cladding of a SI fibre are 1.52 and 1.41 respectively. Calculate (i) critical angle, (ii) N.A., and (iii) the maximum incidence angle.

(M.U. Dec. 2016) (7 m)

Data : 
$$\mu_1 = 1.52$$
,  $\mu_2 = 1.41$   
Formulae :  $\sin \alpha_{\min} = \frac{\mu_2}{\mu_1}$ ,  $NA = \sqrt{\mu_1^2 - \mu_2^2}$   
 $\sin i_{\max} = N.A.$   
Calculations :  $\alpha_{\min} = \sin^{-1} \left(\frac{1.41}{1.52}\right) = 68.06^{\circ}$   
 $N.A. = \sqrt{(1.52)^2 - (1.41)^2} = 0.5677$   
 $i_{\max} = \sin^{-1} (0.5677) = 34.59^{\circ}$   
Results : Critical angle,  $\alpha_{\min} = 65.06^{\circ}$ ,

Numerical aperture, N.A. = 0.5677,

Maximum incidence angle, imax = 34.59°.



The refractive index of the cladding, (i)

The critical internal reflection angle, (ii)

The critical external acceptance angle The numerical aperture

= 1.5, 
$$\Delta = 0.0005$$
  

$$\Delta = \frac{\mu_1 - \mu_2}{\mu_1},$$
sin  $i_{max} = \sqrt{\mu_1^2 - \mu_2^2}$ 
NA =  $\sqrt{\mu_1^2 - \mu_2^2}$ 

$$\mu_{2} = \mu_{1} (1 - \Delta) = 1.5 (1 - 0.0005)$$
  
= 1.49925  
$$\alpha = \sin^{-1} \frac{\mu_{2}}{\mu_{1}} = \sin^{-1} \frac{1.49925}{1.5} = 88.189$$
  
$$i_{max} = \sin^{-1} \sqrt{\mu_{1}^{2} - \mu_{2}^{2}}$$
  
$$i_{max} = \sin^{-1} \sqrt{(1.5)^{2} - (1.49925)^{2}} = 2.718$$
  
$$NA = \sqrt{(1.5)^{2} - (1.49925)^{2}} = 0.474$$

(2-49)

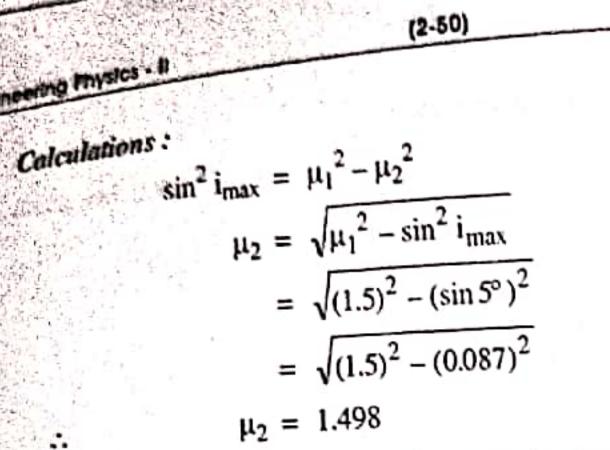
The cladding r.i.,  $\mu_2 = 1.49925$ 

The critical internal reflection angle,  $\alpha = 88.18^{\circ}$ 

The critical external acceptance angle, imax = 2.718°

The numerical aperture , NA = 0.474

An optical glass fibre of refractive index 1.50 is to be clad with another glass to ensure internal reflection that will contain light travelling within 5° of the fibre axis. What maximum index of refraction is allowed for the cladding? (M.U. May 2014) (3 m)


Data :  $\mu_1 = 1.5$ ,  $i_{max} = 5^\circ$ ,  $\mu_0 = 1$ Formula :  $\mu_0 \sin i_{max} = \sqrt{\mu_1^2 - \mu_2^2}$ 

#### Laser and Fibre Optics

(M.U. May 2003) (5 m)

: MORAN

#### Scanned With Lar



Result: Maximum allowed cladding refractive index = 1.498.

#### Problem 13

Consider a multimode step index fibre with  $\mu_1 = 1.53$ ,  $\mu_2 = 1.50$  and  $\lambda = 1 \mu_{m_1 | f_1|}$ core radius is 50 µm, calculate the normalized frequency of the fibre (V) and the num (M.U. Dec. 2013)/t of guided modes.

#### Solution :

 $\mu_1 = 1.53$ ,  $\mu_2 = 1.50$  and  $\lambda = 1 \ \mu m = 10^{-6} \ m$ . Data :  $a = 50 \ \mu m = 5 \times 10^{-5} \ m.$ 

Formula :

$$V = \frac{2\pi a}{\lambda} \sqrt{\mu_1^2 - \mu_2^2}$$
$$N_m = \frac{V^2}{2}$$

$$V = \frac{2 \times 3.14 \times 5 \times 10^{-5}}{2} \times \sqrt{(1.53)^2 - (1.5)^2}$$

Calculations :

V = 94.71

 $N_{m} = 4484$ 

$$N_m = \frac{V^2}{2} = \frac{(94.71)^2}{2} = 4484$$
  
 $V = 94.71$ 

Result :

Problem 14

Calculate the V number of an optical fibre having numerical aperture 0.25 and of diameter 20 µm, if it is operated at 1.55 µm. (M.U. May 2015; Dec. 2017) [] Solution :

Engineering Physics - II

Laser and Fibre

Data :

Formu

Calcu

Result :

Problem 15 0.75 µm. Solution : Data :

#### Problem 16

Solution : Data (2-51)

Winness B

Internet in the h

10.1

N.A. = 0.25, 
$$a = 20 \ \mu m = 2 \times 10^{-5} \ m$$
  
 $\lambda = 1.55 \ \mu m = 1.55 \times 10^{-6} \ m$ 

$$ula: V = \frac{2\pi a}{\lambda} \times N.A$$

lations: 
$$V = \frac{2 \times 3.14 \times 2 \times 10^{-5}}{1.55 \times 10^{-6}} \times 0.25 = 10.125$$

V number = 10.125.

The core diameter of a multimode step index fibre is 50 µm. The numerical aperture is 0.25. Calculate the number of guided modes at an operating wavelength of the set of (M.U. Dec. 2015; May 2017) (3 m)

· 1011 197

$$a = 50 \ \mu m = 5 \times 10^{-5} \ m$$
, N.A. = 0.25  
 $\lambda = 0.75 \ \mu m = 7.5 \times 10^{-7} \ m$ .

Formula :

$$V = \frac{2\pi a}{\lambda} \times N.$$

 $N_m = \frac{V^2}{2}$ 

Calculations :

$$V = \frac{2 \times 3.14 \times 5 \times 10^{-3}}{7.5 \times 10^{-7}} \times 0.25 = 52.36$$

$$N_{\rm m} = \frac{V^2}{2} = \frac{(52.36)^2}{2} = 1370.$$

Result: Number of guided modes = 1370.

A step index fibre in air has N.A. of 0.16, a core refractive index 1.45 and a core diameter of 60 µm. Determine the normalized frequency for the fibre when light of (M.U. Dec. 2016) (3 m) wavelength of 0.9 µm is transmitted.

: N.A. = 0.16, 
$$\mu_1 = 1.45$$
,  $d = 60 \times 10^{-6}$  m,  $\lambda = 0.9 \times 10^{-6}$  m

#### Scanned With Lam

からい 「「「「「「」」」

Sec. 1

**Formula:** 
$$V = \frac{\pi d}{\lambda} NA$$
  
**Formula:**  $V = \frac{\pi d}{\lambda} NA$   
**Formula:**  $V = \frac{\pi d}{\lambda} NA$   
**Formula:**  $V = \frac{\pi d}{\lambda} NA$   
**Calculations:**  $V = \frac{3.14 \times 60 \times 10^{-6}}{0.9 \times 10^{-6}} \times 0.16 = 33.49$   
**Result:** Normalized frequency,  $V = 33.49$ .  
**For G.I.** Fibre.  $N_m = \frac{V^2}{4} = \frac{(40.63)^2}{4} = 412.5 = 412$   
**Result:** Normalized frequency,  $V = 40.63$   
Number of guided modes,  $N_m = 412$ .  
**For Dolor 19**  
The core diameter of a multimode step index fibre is 50 µm. The r  
is 0.25. Calculate the number of guided modes at an operation  
used is 1.5 µm.  
**Solution:**  
**Data:**  $d = 40 \ \mu m = 40 \times 10^{-6} m$ .  $\mu_1 = 1.5$ .  $\mu_2 = 1.46$ ,  
 $\lambda = 1.5 \ \mu m = 1.5 \times 10^{-6} m$ .  
**Formula:**  $V = \frac{\pi d}{\lambda} \sqrt{\mu_1^2 - \mu_2^2}$ ,  $N = \frac{V^2}{2}$  for SI fibre  
**Calculations:**  $V = \frac{3.14 \times 40 \times 10^{-6}}{1.5 \times 10^{-6}} \times \sqrt{(1.5)^2 - (1.46)^2} = 28.81$   
**Formula:**  $V = \frac{3.14 \times 40 \times 10^{-6}}{1.5 \times 10^{-6}} \times \sqrt{(1.5)^2 - (1.46)^2} = 28.81$   
**Formula:**  $V = \frac{3.14 \times 50 \times 10^{-6}}{1.5 \times 10^{-6}} \times \sqrt{(1.5)^2 - (1.46)^2} = 28.81$   
**Formula:**  $V = \frac{3.14 \times 50 \times 10^{-6}}{1.5 \times 10^{-6}} \times 0.25 = 52.36$   
**N**<sub>m</sub>  $= \frac{V^2}{2} = \frac{(52.36)^2}{2} = 1370$ 

 $N = \frac{(28.81)^2}{2} = 415$ 

Result: Number of modes, N = 415.

#### Problem 18

A graded index fibre has a core diameter of 0.05 mm and numerical aperture of at a wavelength of 8500 A°. What is the normalized frequency and the number of m guided in the core?

#### Solution :

 $NA = 0.22, d = 0.05 mm = 5 \times 10^{-5} m,$ Data :  $\lambda = 8500 \text{ A}^\circ = 8500 \times 10^{-10} \text{ m}.$  $V = \frac{\pi d}{\lambda} NA, \quad N_m = \frac{V^2}{2}$ Formula :  $V = \frac{3.14 \times 5 \times 10^{-5}}{8500 \times 10^{-10}} \times 0.22 = 40.63$ Calculations :

Data :

Problem 20

of 1300 nm.

Solution :

Formula

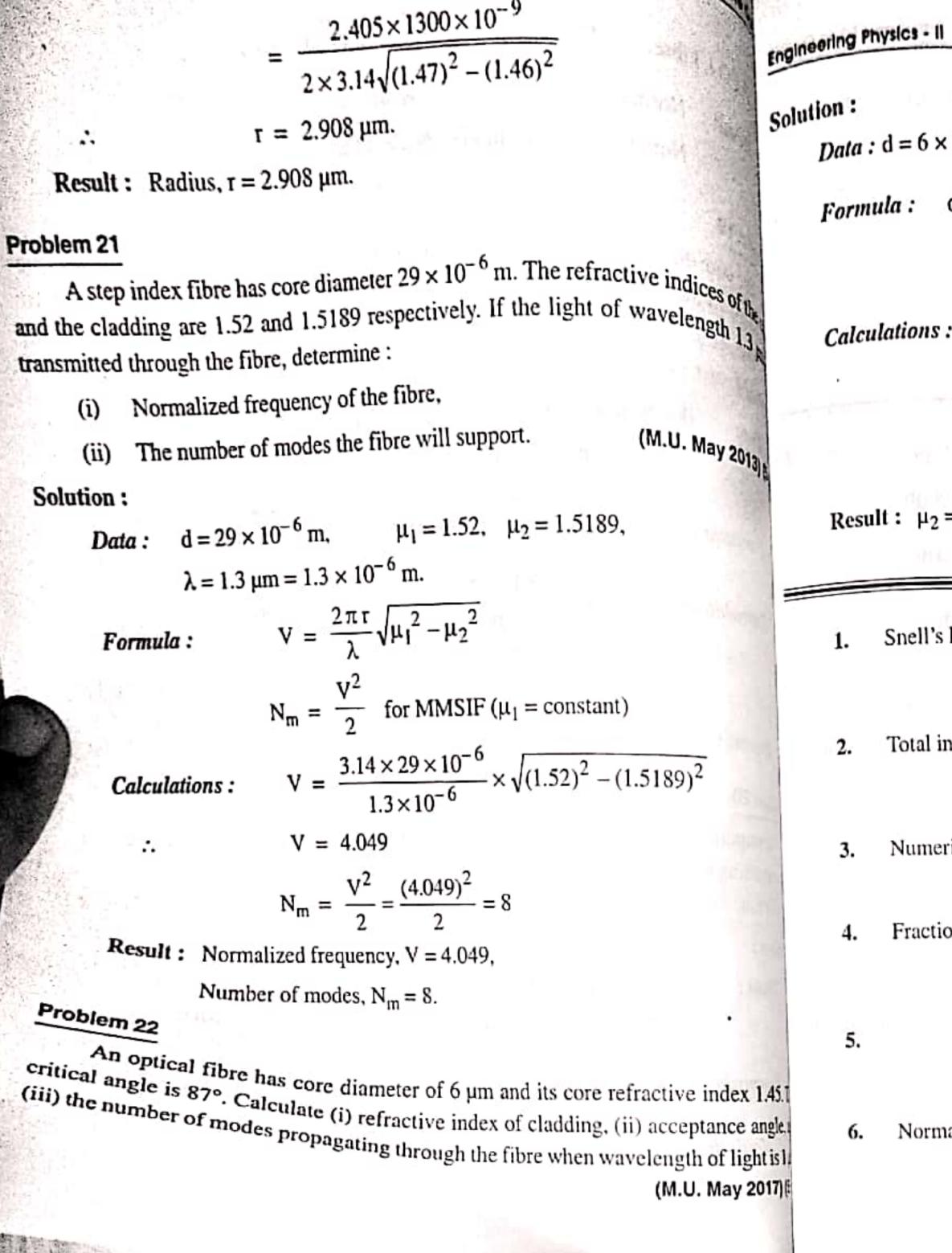
Calculati

he numerical aperture ting wavelength of 2015; Dec. 2017) (3 m)

Result: Number of guided modes = 1370.

Compute the maximum radius allowed for a fibre having core refractive index 1.47 and a cladding refractive index 1.46. The fibre is to support only one mode at a wavelength (M.U. Dec. 2009; May 2013) (5 m)

$$\mu_{1} = 1.47, \ \mu_{2} = 1.46,$$


$$\lambda = 1300 \text{ nm} = 1300 \times 10^{-9} \text{ m}, \qquad V_{max} = 2.405 \text{ for SIF}$$

$$: \qquad V = \frac{2\pi r}{\lambda} \sqrt{\mu_{1}^{2} - \mu_{2}^{2}}$$

$$ions: \qquad r_{max} = \frac{V_{max} \cdot \lambda}{2\pi \sqrt{\mu_{1}^{2} - \mu_{2}^{2}}}$$

#### Scanned With La

G THREE



Laser and Fibre Opfics

(2-55)

$$\alpha_{\min} = \sin^{-1}\left(\frac{\mu_2}{\mu_1}\right), \quad \mathbf{i}_{\max} = \sin^{-1}\left(\sqrt{\mu_1^2 - \mu_2^2}\right)$$

$$V = \frac{\pi d}{\lambda} \sqrt{\mu_1^2 - \mu_2^2}$$

$$\mu_2 = \mu_1 \sin \alpha_{\min} = 1.45 \sin 87^\circ = 1.447$$

$$i_{\text{max}} = \sin^{-1} \left( \sqrt{(1.45)^2 - (1.447)^2} \right) = 0.0934^\circ$$
$$V = \frac{3.14 \times 6 \times 10^{-6}}{10^{-6}} \times \left( \sqrt{(1.45)^2 - (1.447)^2} \right) = 1.756$$

Result :  $\mu_2 = 1.447$ ,  $i_{max} = 0.0934^\circ$ , V = 1.756.

### Important Points to Remember

Snell's law of refraction

$$\frac{\sin i}{\sin r} = \frac{\mu_2}{\mu_1}$$

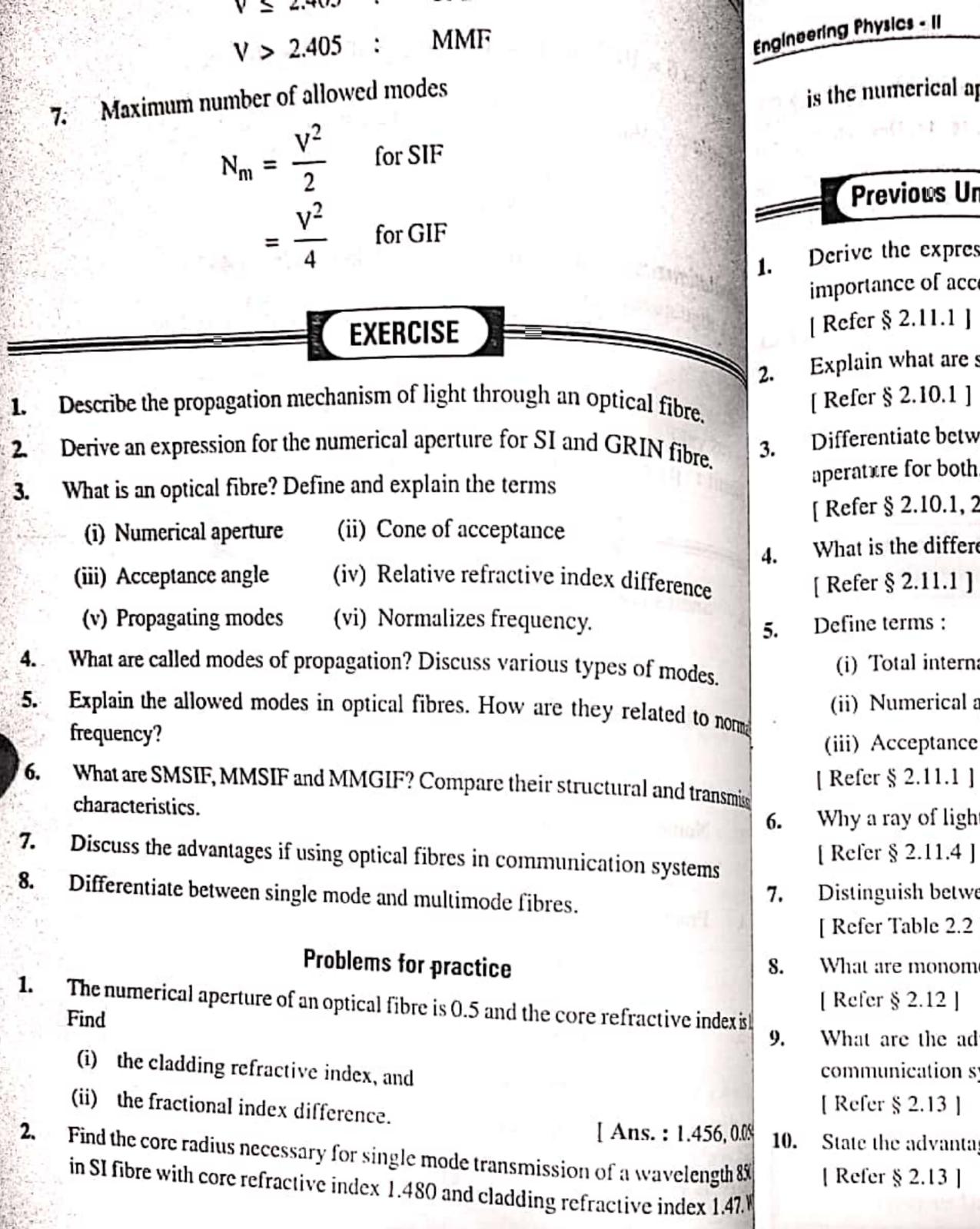
Total internal reflection

$$\sin \alpha = \frac{\mu_2}{\mu_1}$$

Numerical aperture

NA = 
$$\mu_0 \sin i_{max} = \sqrt{\mu_1^2 - \mu_2^2}$$

Fractional refractive index change


$$\Delta = \frac{\mu_1 - \mu_2}{\mu_1}.$$
  
NA =  $\mu_1 \sqrt{2\Delta}$  : S.I. fibre  
=  $\mu_1 \sqrt{2\Delta} \sqrt{1 - (r/a)^2}$  : G.I. fibre

1. 1. 2. 4

153,15,1

Normalized frequency : V number.

$$V = \frac{2\pi a}{\lambda} \sqrt{\mu_1^2 - \mu_2^2}$$



#### (2-57)

Laser and Fibre Optics

is the numerical aperture and the maximum acceptance angle of the fibre ? 607.5 023 1933

[ Ans. : 0.1717, 9° 53' 12" ]

# Previous University Examination Questions with Solutions

Derive the expression of numerical aperture for a step index fibre. What is the importance of acceptance angle in fibre optics communication?

(M.U. Dec. 2002, 05, 07, 08, 11, 12, 15, 16; May 2013, 15) (5 m) Explain what are step index and graded index fibres. Explain their r.i. profiles.

(M.U. Dec 2003, 05, 10, 16; May 2011, 17) (4 m)

Differentiate between SI fibre and GRIN fibre. Derive the expression for numerical aperature for both. (M.U. Dec 2010, 14; May 2014, 18) (9 m)

[Refer § 2.10.1, 2.11.1, 2.11.3]

What is the difference between critical angle and acceptance angle?

Refer § 2.11.1 ]

(M.U. May 2010) (3 m)

(M.U. May 2012) (3 m)

Define terms :

(i) Total internal reflection

(ii) Numerical aperture

(iii) Acceptance angle

Refer § 2.11.1 ]

(M.U. May 2009; Dec. 2013, 14, 15) (3 m)

Why a ray of light is zigzag in SI fibre and spiral in GRIN fibre?

[ Refer § 2.11.4 ]

Distinguish between single mode and multimode fibres.

[Refer Table 2.2] (M.U. Dec 2009; May 2013) (3 m)

What are monomode and multimode fibres? Explain V number.

[Refer § 2.12] (M.U. Dec. 2016; Nov. 2018) (3 m)

What are the advantages of optical fibre? Explain the use of optical fibre in (M.U. Dec. 2017) (7 m) communication system.

[Refer § 2.13]

State the advantages of optical fibre cables on conventional electrical cables. (M.U. May 2019) (3 m) [ Refer § 2.13 ]

#### Scannod With Lam'

function of each block.

the start of a water in the last a start was have

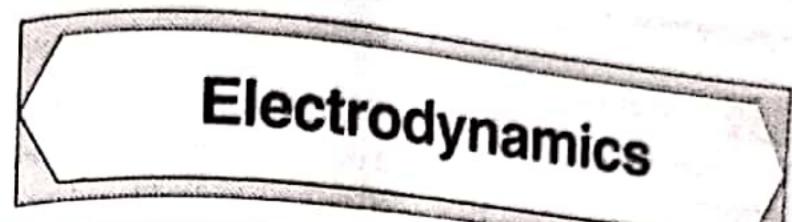
30

1000

[ Refer § 2.13.1 ]

the second second state

Why would you recommend the use of optical fibre in communication system? (M.U. May 2008, 16, 17; Dec. 2012) (2. 11. 12. Draw the block diagram of an optical fibre communication system and explains. (M.U. Nov. 2011) (M.U. Nov. 2018) (5




000

Course Outcome : CO3 : Learner will be able to illustrate the fundamentals of electrodynamics with required mathematical concepts.

- 3.1
- 3.2
- 3.4
- 3.5
- 3.6

  - Exercise



Prerequisites : Electric Charges, Coulomb's law-force between two point charges, (Prerequisited, Electric field due to a point charge, Electric field lines, Electric field lines, Electric Electric field due to a dipole, Gauss's law, Faraday's law,

dipole, and Vector field, Physical significance of gradient, Curl and divergence in Scalar and Vector field, System, Gauss's law for electron of the state of the Scalar and Cordinate system, Gauss's law for electrostatics, Gauss's law for Cartesian end time varying fields). (Free space and time varying fields). (03 Hours)

(Weightage - 12%)

### SYNOPSIS

Introduction

Prerequisites

3.3 Scalar and Vector Fields

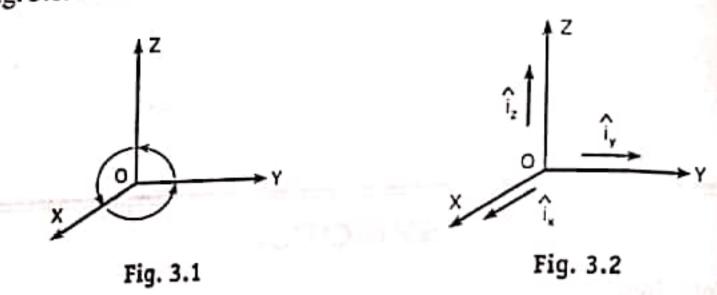
Physical Significance of Gradient, Divergence and Curl

Maxwell's Equations : Gauss' law, Faraday's law and Ampere's Circutal law.

Solved Problems

Important Points to Remember

Previous University Examination Questions with Solutions


Introduction Electrodynamics is used to study the electric, magnetic and electromagnetic el 3.1 Electrodynamics is used types of charge configurations, the study of dis phenomena. To deal with various of the invariant electric and magnetic field coordinate systems is essential. The static or time invariant electric and magnetic field coordinate systems is essential. The other hand, the time varying electric and magnetic field independent of each other. On the other hand, the time varying electric and magnetic fields the foundation independent of each other. On the other agnetic fields the foundation of white are interdependent. This gives rise to electromagnetic applications of electron white are interdependent. This gives have some important applications of electrodynamic set of four Maxwell's equations. Some important applications of electrodynamic antenna, waveguides, satellites, etc.

#### Prerequisites 3.2

### 3.2.1 : Coordinate Systems

# The Cartesian or Rectangular Coordinate System

(a) In Cartesian coordinate system, there are three coordinate axes perpendiculario. other that intersect at the origin. It is customary to choose a right handed coordinates as shown in Fig. 3.1. Here 'O' is the origin.



#### Unit Vectors

These are the vectors of unit length oriented strictly along the three axes of coordinate system as shown in Fig. 3.2. These are denoted by (ix, iy, iz) or (i, with magnitude along X, Y, Z directions respectively. Being mutually perpendicular to each other the vectors are related as follows :

$$\hat{i}_{x} \cdot \hat{i}_{x} = \hat{i}_{y} \cdot \hat{i}_{y} = \hat{i}_{z} \cdot \hat{i}_{z} = 1$$

$$\hat{i}_{x} \times \hat{i}_{y} = \hat{i}_{z}, \quad \hat{i}_{y} \times \hat{i}_{z} = \hat{i}_{x}, \quad \hat{i}_{z} \times \hat{i}_{x} = \hat{i}_{y}$$

Engineering Physics - II

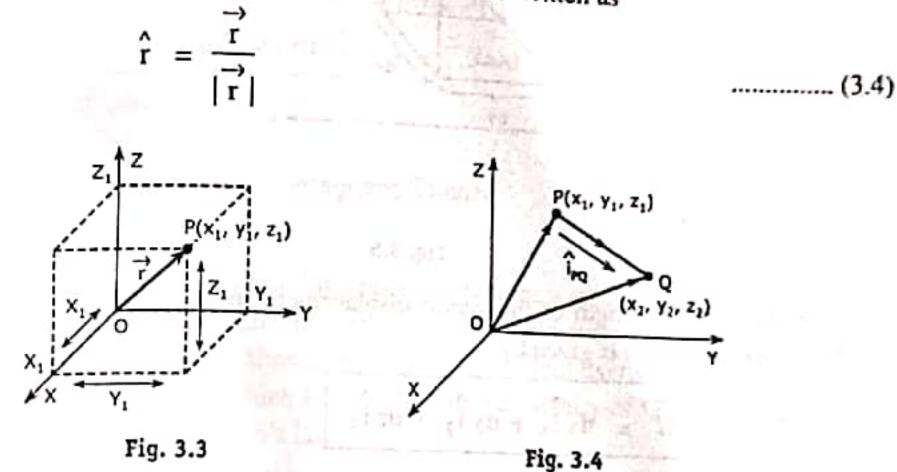
(ii)

(iii)

.....

The unit vector along PQ is given by

### **Position Vectors**


The position vector of P(x, y, z) [Fig. 3.3] and is written as

$$\vec{r} = x\hat{i}_x + y\hat{i}_y + z\hat{i}_z$$

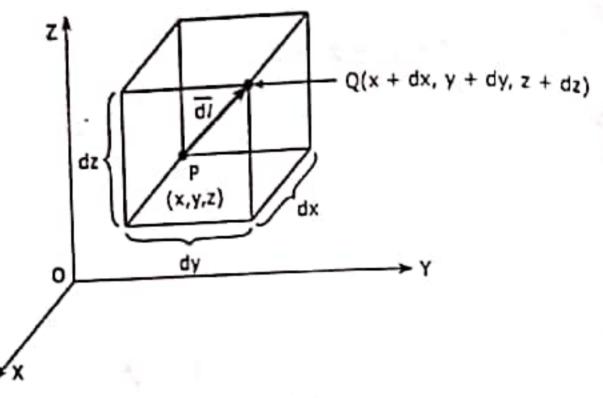
The magnitude of which is

$$|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$
 (3.3)

An unit vector  $\vec{r}$  along the position vector  $\vec{r}$  is written as



#### **Distance Vector : Displacement Vector**


Consider a point  $P(x_1, y_1, z_1)$  and a point  $Q(x_2, y_2, z_2)$  as shown in Fig. 3.4. The displacement vector or distance vector from a point  $P(x_1, y_1, z_1)$  to point Q (x2, y2, z2) is represented by a vector PQ (Fig. 3.4), is given by

$$|\vec{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
 ......(3.6)

$$\hat{i}_{PQ} = \frac{PQ}{\overrightarrow{PQ}}$$

Engineering Physics • L

(iv) Differential Elements Differentian Point P(x, y, z). By increasing the coordinates, x, y and z infinites. Consider the point P(x, y, z). By increasing the coordinates, x, y and z infinites. Consider the point x (infinitesimal box as shown in Fig. 3.5. dx, dy and dz from an infinitesimal box as shown in Fig. 3.5.





The differential length or the vector displacement from P(x, y, z) to Q(x, y, z)y+dy, z+dz) (Fig. 3.5) is given by

$$\vec{dl} = dx\hat{i}_x + dy\hat{i}_y + dz\hat{i}_z$$

with magnitude of

$$\vec{dl} = \sqrt{dx^2 + dy^2 + dz^2}$$

The three displacement components dx ix, dy iy and dz iz also define three surof infinitesimal areas in the three planes intersecting at P. The surface vector b magnitude, equal to the area and direction, normal to the area.

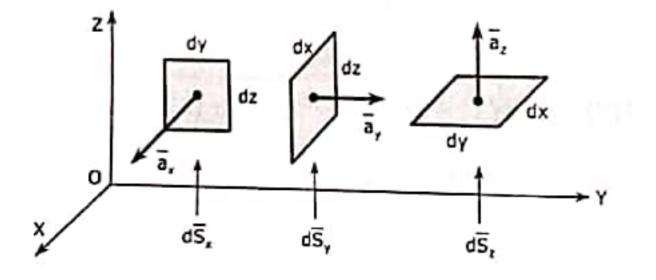



Fig. 3.6

Engineering Physics - II

The differential surface elements (as shown in Fig. 3.6) are thus given by

which is a scalar quantity.

# 3.2.2 : Fundamentals of Electromagnetic Theory

### Coulomb's Law

If a static charge Q is placed in space, it develops a spherical electric field surrounding it. The lines of force of the field emanates radially outwards from Q as shown in Fig. 3.7. This field exerts a force on another charge Q' which is brought into the vicinity of Q. This force is given by Coluomb's law

The Electric Field Intensity (E) Electric field intensity is defined as the force per unit charge at any point in the field region and is given by

The number of lines of force passing through unit surface area. Electric Flux Density (\$\$): Electric Displacement (D) Electric flux density is generally defined as the number of lines of force passing through unit surface area of the field region. On the other hand, electric displacement is defined as the electric charge over unit area of the spherical surface with its centre at

(3.5)

Electrodynamics

(3.10)

$$d\vec{S}_{x} = \pm dy dz \hat{i}_{x}$$

$$\vec{dS}_{y} = \pm dz dx \hat{i}_{y}$$

$$\vec{dS}_{z} = \pm dx dy \hat{i}_{z}$$

where ± sign takes into account two possible directions of normal to the surface.

The infinitesimal volume element is given by

$$dv = dx dy dz$$



Fig. 3.7

Here,  $\varepsilon_0 = 8.854 \times 10^{-12}$  (C<sup>2</sup>/Nm<sup>2</sup>), permittivity of free space.

$$\vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{i}_r (N/C) \qquad (3.13)$$

charge Q. Thus, electric displacement is same as electric charge density and is  $\rightarrow$ 

$$\vec{D} = \frac{Q}{4\pi r^2} \hat{i}_r = \varepsilon_0 \vec{E}$$

Total flux over the complete spherical surface is given by

$$\phi = \int_{S} \mathbf{D} \cdot \mathbf{ds}$$

#### **Electric Potential**

The work done by an external source in moving a charge Q from one point to and in an electric field E is

$$V_{AB} = \frac{W}{O} = -\int_{B}^{A} \stackrel{\rightarrow}{E} \cdot \frac{d}{d}$$

#### s seen in Fig. 3.8.

This is called the potential difference between points A and B and is given by

Here, rA and rB are the position vectors of points A and B.

The absolute potential at a point P at a distance R from a charge Q as shown in Fig. 3.9 is given by

The electrical field at any point in the field is given by

$$\vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \quad \text{in scalar form}$$
  
$$\vec{E} = \frac{Q}{4\pi\epsilon_0 r^2} \hat{i}_r \quad \text{in vector form}$$

and

Engineeting Physics - II

Magnetic Field The region around a magnet within which the influence of the magnet can be experienced is called the magnetic field. of the magnetic lines of force or magnetic flux lines start from the north pole and end of the south pole. An isolated magnetic pole can never exist.

The total magnetic lines of force i.e., magnetic flux crossing a unit surface area in a perpendicular direction is called magnetic flux density. This is measured in Wb/m<sup>2</sup> and is very similar to the electric flux density D in electrostatics. The magnetic field intensity (H) and the magnetic flux density (B) are related as

Fig. 3.8

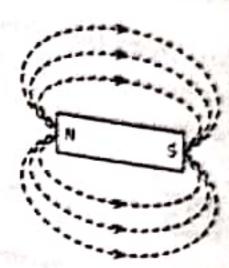
Fig. 3.9

.....

CIV DISKI

Field : The behaviour of a physical quantity in a given region is described by its value at each point in that region. A field is a function that describes the behaviour of a physical quantity at all points in a given region of space. The physical quantity described by the field can be either a scalar or a vector. Thus a field can also be a scalar field or a vector field.

Scalar field : A scalar field is specified by the magnitude of a physical quantity at each point of the field region. Some examples of scalar fields are temperature, pressure, electric potential, etc.


### Magnetic Field Intensity (H)

The magnetic field intensity at any point in the magnetic field is defined as the force experienced by a unit north pole of one weber strength, when placed at that point. The magnetic flied intensity is measured in (N/wb). This is similar to the electric field intensity, E in electrostatics.

Magnetic Flux Density (B)

- $\vec{B} = \mu \vec{H}$
- where,  $\mu = \mu_0 \mu_r$ ; permeability of the medium,
  - with  $\mu_0 = 4\pi \times 10^{-7}$  (N / A<sup>2</sup>), permeability of free space,
- and  $\mu_r =$  relative permeability.

#### Scalar and Vector Fields





Vector field : A vector field is specified by both the magnitude and the direct Vector field : A vector field is of the field region. Examples of vector fields are velocity acceleration, electric field, etc.

#### Physical Significance of Gradient, Divergence and Curl 3.4

#### 3.4.1 : The Del Operator : ∇

We introduce a vector differential operator which is essential for the stud electrodynamics.

The del operator expressed in Cartesian coordinates, as

| -> | ~    | 9                               | ^  | 9         | <b>^</b> | 9  |
|----|------|---------------------------------|----|-----------|----------|----|
| V  | = ix | $\frac{\partial}{\partial x}$ + | iy | <u>ðy</u> | + 1z     | θz |

#### 3.4.2 : Gradient of a Scalar Field

Gradient is a mathematical operation performed on a scalar field which result a vector field. Gradient is a vector that represents both the magnitude and the direct of maximum space rate of increase of a scalar.

If V = V(x, y, z) is a scalar function the gradient operation is written in Carles coordinates, as

 $\vec{\nabla} \mathbf{V} = \frac{\partial \mathbf{V} \hat{\mathbf{i}}_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{V} \hat{\mathbf{i}}_{\mathbf{y}}}{\partial \mathbf{y}} + \frac{\partial \mathbf{V} \hat{\mathbf{i}}_{\mathbf{z}}}{\partial z} \hat{\mathbf{i}}_{\mathbf{z}}$ 

Gradient is the multidimensional rate of change of a given function.

At any point in the scalar field.

- the magnitude of the resulting vector field is the maximum rate of increase (i) the scalar field.
- the direction of the resulting vector field is the direction in which the maximu (ii) rate of increase occurs.

# 3.4.3 : Divergence of a Vector Field

The rate of change of a vector field is complex. The divergence of a vector indicates how much the vector field spreads out from a certain point.

Engineering Physics - II

Electros

is a scalar.

Mathematical expression for the curl B in Cartesian coordinates can be obtained by solving the determinant as given below.

For

If the curl of a vector field is zero the filed is irrotational and is called a conservative field.

(3.9)

Imagine a fluid, with the vector field representing the velocity of the fluid at each point in space. Divergence measures the net flow of the fluid out of a given point. If the point in space of a vector

In Cartesian coordinates, B is a vector field given by

$$\vec{B} = B_x \hat{i}_x + B_y \hat{i}_y + B_z \hat{i}_z$$

and its divergence is written as

$$\vec{B} = \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} + \frac{\partial B_z}{\partial z}$$
(3.25)

### 3.4.4 : Curl of a Vector Field

### The curl of a vector field at any point signifies how much the vector quantity curls or twists around that point. As an example, we may consider water going down the drain. In this motion water swirls in rotation. The curl of the velocity field of water describes its local rotation. The rotation has a direction and is about the direction of motion. The curl of a vector field is a vector field and is written as $\nabla \times B$ .

$$\vec{B} = B_x \hat{i}_x + B_y \hat{i}_y + B_z \hat{i}_z \qquad (3.26)$$

$$Curl \vec{B} = \vec{\nabla} \times \vec{B} = \begin{vmatrix} \hat{i}_x & \hat{i}_y & \hat{i}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ B_x & B_y & B_z \end{vmatrix}$$

$$\vec{\nabla} \times \vec{B} = \hat{i}_x \left( \frac{\partial B_z}{\partial y} - \frac{\partial B_y}{\partial z} \right) + \hat{i}_y \left( \frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x} \right) + \hat{i}_z \left( \frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right)$$

$$(3.27)$$

the States of the press of a state of the remaining of the state of

# Engineering Physics - B 3.4.5 : Divergence of a Curl is Zero

For any field B the divergence of a curl of B is written as

$$\begin{aligned} \vec{\nabla} \times \vec{B} &= \left(\hat{i}_{x} \frac{\partial}{\partial x} + \hat{i}_{y} \frac{\partial}{\partial y} + \hat{i}_{z} \frac{\partial}{\partial z}\right) \cdot \\ &= \left(\hat{i}_{x} \left(\frac{\partial B_{z}}{\partial y} - \frac{\partial B_{y}}{\partial z}\right) + \hat{i}_{y} \left(\frac{\partial B_{x}}{\partial z} - \frac{\partial B_{z}}{\partial x}\right) + \hat{i}_{z} \left(\frac{\partial B_{y}}{\partial x} - \frac{\partial}{\partial z}\right) \right) \\ &= \frac{\partial}{\partial x} \left(\frac{\partial B_{z}}{\partial y} - \frac{\partial B_{y}}{\partial z}\right) + \frac{\partial}{\partial y} \left(\frac{\partial B_{x}}{\partial z} - \frac{\partial B_{z}}{\partial x}\right) + \frac{\partial}{\partial z} \left(\frac{\partial B_{y}}{\partial x} - \frac{\partial}{\partial z}\right) \\ &= 0 \end{aligned}$$

## 3.4.6 : Divergence Theorem and Stokes Theorem

These are two important theorems essential for the study of electromagnetism

### Divergence Theorem (A)

The volume integral of the divergence of a vector field A taken over any volume is equal to the surface integral of A taken over the surface enclosing the volume v. The

$$\int_{\mathbf{v}} \overrightarrow{\nabla} \cdot \overrightarrow{\mathbf{A}} \, d\mathbf{v} = \oint_{\mathbf{S}} \overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{ds}}$$

Here the direction of ds is always outward normal as shown in Fig. 3.11.

The divergence theorem is used to convert a volume integral to a surface integral and vice-versa.

### Stokes' Theorem (B)

The surface integral of the curl of a vector field A over an open surface is equal to the line integral of the vector field over the closed curve bounding the surface area. That is

$$\int_{S} (\overrightarrow{\nabla} \times \overrightarrow{A}) \cdot \overrightarrow{ds} = \oint_{C} \overrightarrow{A} \cdot \overrightarrow{dl}$$

The Stokes' theorem is used to replace a surface integral by a line integral or versa.

Electrodynami Maxwell's equations, a set of four equations form the foundation of electromagnetic 3.5 theory. These are extensions of works of Gauss, Faraday and Ampere. Maxwell's equations are classified into following categories -For static fields and for time varying fields, (i)

(3-11)

(ii)

Fig. 3.11

S

Fig. 3.12

Both static electric and magnetic fields are used in the design of many devices. For example, a static electric field can accelerate an electro and a static magnetic field can deflect it, this scheme is employed in the design of an oscilloscope and an ink-jet printer. Time varying field : If the value of the physical quantity changes with time in the field region the field is a time varying field. Time varying electric and magnetic fields are coupled resulting in an electromagnetic field.

3.5.2 : Laws for Static Electric and Magnetic Fields Gauss' Law for Electric Field (A) Gauss' law : The electric flux passing through any closed surface is equal to the total charge enclosed by that surface. This is mathematically stated as "the surface integral of the normal component of electric flux density D over any closed surface equals the charge enclosed" and is written as

Here, Q being the total charge enclosed by the closed surface as shown in Fig. 3.13. This may be expressed as the volume integral of the charge density py. So Gauss' law is written in integral form as

# Maxwell's Equations

Fig. 3.13

a nextre brind with

In differential form and in integral form.

# 3.5.1 : Static and Time Varying Fields

Static fields : If the value of the physical quantity describing the field does not vary with time the field is called time invariant or a static field.

$$\phi = \oint_{S} \overrightarrow{D} \cdot \overrightarrow{ds} = Q_{\text{enclosed}} \qquad \dots \qquad (3.30)$$

..... (3.31)

$$\oint_{S} \overrightarrow{D} \cdot \overrightarrow{ds} = \int_{V} \rho_{V} dV$$

Applying divergence theorem, the surface integral is converted to a volume

and we write  
$$\int \vec{D} \cdot \vec{ds} = \int (\vec{\nabla} \cdot \vec{D}) dx$$

Hence, equation (3.31) becomes

$$\int (\vec{\nabla} \cdot \vec{D}) dv = \int \rho_v dv$$

Hence, Gauss' law for electric field in differential form or point form is with.

$$\vec{\nabla} \cdot \vec{D} = \rho_v$$

In an electric or a magnetic field, any closed surface, real or imaginary, it w a Gaussian surface.

### Gauss' Law for Static Magnetic Field (B)

In a magnetic field the magnetic lines are closed on themselves as seen in Fig. Hence, the total outgoing magnetic flux is zero. This is written as

$$\vec{\mathbf{B}} \cdot \vec{\mathbf{ds}} = 0$$

and is called the Gauss' law for magnetic field in integral form.

Using divergence theorem the magnetic Gauss' law can be written as

$$\oint \vec{B} \cdot \vec{ds} = \oint (\vec{\nabla} \cdot \vec{B}) dv = (\vec{a} \cdot \vec{b$$

This is called the differential or point form of magnetic Gauss' law.

### Faraday's Law for Static Electric Field (C)

In static electric fields the work done involved in moving a test charge arom closed path is equal to zero. Such fields are called conservative fields. In this case

$$\oint_{C} \vec{E} \cdot \vec{dl} = 0$$

or

This is integral form of Faraday's law for static electric field. Using Stoke's then this can be written as

Engineering Physics - II

Hence.

(D)

The law is very useful to determine H when the current distribution is symmetrical. Since  $B = \mu H$ , equation (3.38) can be written as

Using Stoke's theorem, this can be rewritten as

Hence,

Since, B

.................

(3-13)

$$\oint \vec{E} \cdot \vec{dI} = \oint (\vec{\nabla} \times \vec{E}) \cdot \vec{ds} = 0$$

$$\vec{\nabla} \times \vec{E} = 0$$

This is differential or point form of Faraday's law for static electric field. ----- (3.40)

Electrodyna

Outward

# Ampere's Circuital Law for Static Magnetic Field

Ampere's circuital law states that "the line integral of magnetic field intensity H around a closed path is exactly equal to the direct current enclosed by that path". The mathematical representation of Ampere's law is

$$\oint \vec{H} \cdot \vec{dl} = I$$
Fig. 3.14

$$\oint \vec{B} \cdot dI = \mu_0 I$$

This is called the integral form of Ampere's circuital law.

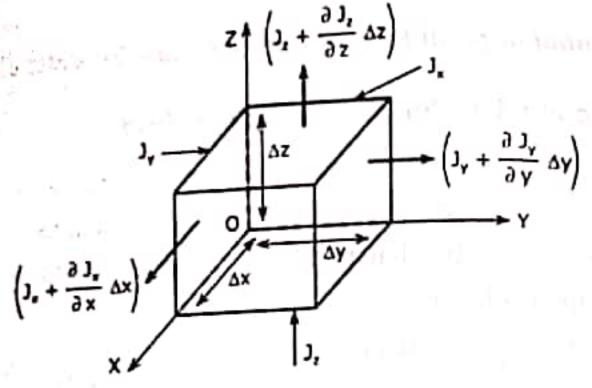
Replacing  $I = \int J \cdot ds$  where J is the current density and S is the surface area bounded by the path of integration of H, we can write

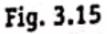
$$\oint \vec{H} \cdot \vec{dl} = \int \vec{J} \cdot \vec{ds} \qquad (3.43)$$

$$\oint (\vec{\nabla} \times \vec{H}) \cdot \vec{ds} = \int \vec{J} \cdot \vec{ds} \qquad (3.44)$$

$$\vec{\nabla} \times \vec{H} = \vec{J} \qquad (3.45)$$

$$\vec{\nabla} \times \vec{H} = \mu_0 \vec{H} \text{ in free space, we can write}$$


$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} \qquad (3.46)$$


This is called the differential or point form of Ampere's circuital law. THEN BES WIND CARDEN IN THE SET OF A

(3.42)

# wing Thysics - h

(E) Equation of Continuity Equation of consider a small volume element  $\Delta v$  as shown in Fig. 3.15 located inside a cond. medium. The current density has the direction of current flow.





If there is no source or sink of charge inside the volume  $\Delta v (= \Delta x \Delta y \Delta z)$ , the curve is steady and continuous and so is current density as shown in Fig. 3.20. We have

 $\vec{\nabla} \cdot \vec{J} = 0$ or  $\oint \vec{J} \cdot \vec{ds} = 0$ 

All three components and their variation are shown in the Fig. 3.15.

Here  $\frac{\partial J_x}{\partial x}$ ,  $\frac{\partial J_y}{\partial y}$ , and  $\frac{\partial J_z}{\partial z}$  are the rate of change of  $J_x$ ,  $J_y$  and  $J_z$  in x, y and directions respectively.

If the current is not steady, the difference between the current flowing into the voland that flowing out of the volume must equal the rate of change of electric charge insi the volume.

A net flow of current out of the volume (positive current flow) must be equal tok negative rate of change of charge with time (rate of decrease of charge) within 1 volume. This is expressed by the continuity equation,

$$\vec{\nabla} \cdot \vec{J} = -\frac{\partial \rho_v}{\partial t}$$

where  $\rho_v$  is the volume charge density. This is the general relation between current density J and the volume charge dense Pv at a point.

3.5.4 : Time Varying Electric and Magnetic Fields In time varying electric and magnetic fields, the Faraday's law and Ampere's circuital law are modified as follows :

(A) A time varying magnetic field produces an electro motive force (emf) which may establish a current in a suitable closed circuit.

where E is the emf producing field.

### (3-15)

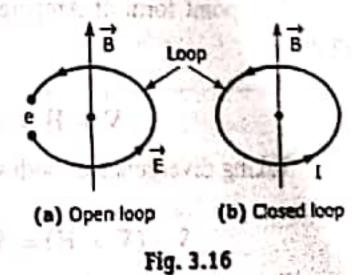
# 3.5.3 : Fundamental Postulates of Electrostatics and Magnetostatics

The static electric and magnetic fields are governed by the following postulates that form the foundation of electrostatics and magnetostatics.

| Differential form                                         | Integral form                                                        | Significance                               |
|-----------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------|
| $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$ | $\int_{S} \vec{E} \cdot \vec{ds} = \frac{Q}{\varepsilon_{o}}$        | Gauss's law for<br>electrostics            |
| $\vec{\nabla} \cdot \vec{B} = 0$                          | $\oint_{S} \overrightarrow{B} \cdot \overrightarrow{ds} = 0$         | Gauss's law for<br>magnetostatics          |
| $\vec{\nabla} \times \vec{E} = 0$                         | $\oint_{C} \vec{E} \cdot \vec{dl} = 0$                               | Faraday's law of electrostatics            |
| $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$             | $\oint_{C} \overrightarrow{B} \cdot \overrightarrow{dI} = \mu_{0} I$ | Ampere's circulal law<br>of magnetostatics |

| Table | 3.1 |  |
|-------|-----|--|
|-------|-----|--|

Contractions


# Faraday's Law in Time Varying Fields

Faraday's law in general is stated as

$$emf = e = -\frac{\partial \phi}{\partial t}$$
 ..... (3.49)

The emf induced in the loop (Fig. 3.16) e is given by

$$e = \vec{E} \cdot dl$$



tipations the first hereistant term (3.50) I WELL GITTELA DE LEMERSTE COMPLET

happenet O eldsmov materiale the blog as mit

(3-16) Electrodyn Ingineering Physics - II (3-17) Engineering Physics - It The total flux through the circuit is given by  $\vec{\nabla} \times \vec{H} = \vec{J} + \vec{G}$  $\phi = \oint \vec{B} \cdot \vec{ds}$ ······ (35) Taking divergence of both sides, we get Substituting equations (3.50) and (3.51) in equation (3.49), it is obtained that  $\oint \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \oint \vec{B} \cdot d\vec{s}$ i.e., Since divergence of a curl is zero.  $\oint \vec{E} \cdot \vec{dI} = -\oint \frac{\partial \vec{B}}{\partial t} \cdot \vec{ds}$ j.e., Using continuity equation here, we get This is the integral form of Faraday's law. By Stoke's theorem, equation (3.52) can be written as  $\int_{S} (\vec{\nabla} \times \vec{E}) \cdot \vec{ds} = -\oint_{S} \vec{\partial} \vec{E} \cdot \vec{ds}$ It follows,  $\vec{\nabla} \times \vec{E} = -\frac{\vec{\partial} \vec{B}}{\vec{\partial} t}$ The point or differential form of Gauss' law is Hence, This is the differential or point form of Faraday's law. Modification of Ampere's Law in Time Varying Fields So we obtain, Inconsistency in Ampere's law derived for static fields : These Ampere's law in differential or point form becomes The point form of Ampere's law derived for magnetostatics is given in equator נוספיים ביקורמג וצרול היה הרפיה היינהרו (3.45) as  $\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J}$ Integrating it over a surface area S, we get Taking divergence of both sides of it we get Millerry Lerry Hurner Hill  $\nabla \cdot (\nabla \times H) = \nabla \cdot J$ ...... (3.54 Since divergence of a curl is zero, Applying Stoke's theorem, we obtain  $\vec{\nabla} \cdot \vec{J} = 0$ ..... (3.55 which is not consistent with the continuity equation (3.48). Hence, statement of Ampere's law is inconsistent and requires some modification Let us add an unknown variable G to equation (3.54), the Ampere's law become the integral form of Ampere's law.

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{H}) = \vec{\nabla} \cdot (\vec{J} + \vec{G})$$
$$\vec{\nabla} \cdot (\vec{J} + \vec{G}) = 0$$

$$\vec{\nabla} \cdot \vec{J} = - \vec{\nabla} \cdot \vec{G}$$

$$\vec{\nabla} \cdot \vec{G} = \frac{\partial \rho_v}{\partial t}$$

$$\vec{\nabla} \cdot \vec{D} = \rho_{v}$$
$$\vec{\nabla} \cdot \vec{G} = \frac{\partial}{\partial t} \vec{\nabla} \cdot \vec{D} = \vec{\nabla} \cdot \frac{\partial \vec{D}}{\partial t}$$
$$\vec{G} = \frac{\partial \vec{D}}{\partial t}$$

...... (3.60)

Electrodynamics

..... (3.58)

$$\vec{\nabla} \times \vec{\mathbf{H}} = \vec{\mathbf{J}} + \frac{\partial \vec{\mathbf{D}}}{\partial t}$$

$$\vec{\nabla} \times \vec{H} \cdot \vec{ds} = \int_{S} \left( \vec{J} + \frac{\partial \vec{D}}{\partial t} \right) \cdot \vec{ds}$$

$$\oint \vec{\mathbf{H}} \cdot \vec{\mathbf{d}l} = \int_{\mathbf{S}} \left( \vec{\mathbf{J}} + \frac{\vec{\partial \mathbf{D}}}{\vec{\partial t}} \right) \cdot \vec{\mathbf{ds}}$$

3.5.5 ; Maxwell's Equations : General Form S: Maxwell's Equations for time varying electromagnetics.

are listed below.

ting Physics

### Table 3.2

| Differential (Point) form                                 | Integral form                                                                 | Significance                                      |
|-----------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|
| $\overrightarrow{\nabla} \cdot \overrightarrow{D} = \rho$ | $\oint \vec{D} \cdot \vec{ds} = \int_{V} \rho  dv$                            | Gauss's law for<br>electrostatics                 |
| $\vec{\nabla} \cdot \vec{B} = 0$                          | $\oint \vec{B} \cdot \vec{ds} = 0$                                            | Gauss's law for<br>magnetostatics<br>(non-existen |
| $\vec{\nabla} \times \vec{E} = -\vec{B}$                  | $\oint \vec{E} \cdot \vec{dl} = -\int \vec{B} \cdot \vec{ds}$                 | magnetic monopo<br>Faraday's law                  |
| $\vec{\nabla} \times \vec{H} = \vec{J} + \vec{D}$         | $\oint \vec{H} \cdot \vec{dl} = \int (\vec{J} + \vec{D}) \cdot \vec{ds}$      | Ampere's law                                      |
| Supplementary equation                                    |                                                                               |                                                   |
| $\vec{\nabla} \cdot \vec{J} = -\rho$                      | $\oint_{s} \overrightarrow{J} \cdot \overrightarrow{ds} = -\int_{v} \rho  dv$ | Continuity equation                               |

## Maxwell's Equations in Free Space

In free space, there is no charge and no current. Hence,  $\rho = 0$  and J = 0 and Maxwell equations are listed as given below.

| Ta | bl | e | 3 | .3 |
|----|----|---|---|----|
|    |    |   |   |    |

| Differential (Point) form                                         | Integral form                                                                                                     | Significance                                                                                                    |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| $\vec{\nabla} \cdot \vec{D} = 0$ $\vec{\nabla} \cdot \vec{B} = 0$ | $\oint \overrightarrow{D} \cdot \overrightarrow{ds} = 0$ $\oint \overrightarrow{B} \cdot \overrightarrow{ds} = 0$ | Gauss's law for<br>electrostatics<br>Gauss's law for<br>magnetostatics<br>(non-existance of<br>magnetic monopol |

Table 3.3 cont

Engineering Ph. TXE=  $\vec{\nabla} \times \vec{H} =$ 3.6 Solved Problems problem 1 (i)

(ii)

Solution :

(ii)

...

Problem 2

Solution :

Diverg

| - | 18 | C | • |   |   |
|---|----|---|---|---|---|
| ш | •  |   | _ | _ | - |

(3-19)

|       |                                                               | Electrodynamics |
|-------|---------------------------------------------------------------|-----------------|
| B     | $\oint \vec{E} \cdot \vec{dl} = -\int \vec{B} \cdot \vec{ds}$ |                 |
| \     | S                                                             | Faraday's law   |
| J + D | $\oint \vec{H} \cdot \vec{dl} = \int \vec{D} \cdot \vec{ds}$  | Ampere's law    |
|       | 3                                                             | 1 3 MW          |

A vector field W is given in Cartesian coordinate system as

$$\vec{W} = (4x^2y)\hat{i}_x - (7x+2z)\hat{i}_y + (4xy+2z^2)\hat{i}_z$$

Calculate the magnitude of W at point P (2, -3, 4).

Obtain a unit vector that shows the direction of the vector field at point P.

(i) At point P (2, -3, 4), x = 2, y = -3, z = 4 and

$$\vec{W} = -48\hat{i}_x - 22\hat{i}_y + 8\hat{i}_z$$
  
$$\vec{W} = \sqrt{(-98)^2 + (-22)^2 + 8^2} = 53.4041$$

Unit vector in the direction of W at point P is

$$\hat{i}_{P} = \frac{\overrightarrow{W} \text{ at } P}{|\overrightarrow{W}| \text{ at } P} = \frac{-48\hat{i}_{x} - 22\hat{i}_{y} + 8\hat{i}_{z}}{53.4041}$$
$$\hat{i}_{P} = -0.8988\hat{i}_{x} - 0.4119\hat{i}_{y} + 0.1498\hat{i}_{z}$$

Find the divergence of the vector field  $F = x^2 yz i_x + xz i_y$  in Cartesian coordinates. (M.U. May 2018) (5 m)

gence, 
$$\vec{\nabla} \cdot \vec{F} = \left(\frac{\partial}{\partial x}\hat{i}_x + \frac{\partial}{\partial y}\hat{i}_y + \frac{\partial}{\partial z}\hat{i}_z\right)\cdot\left(x^2yz\hat{i}_x + xz\hat{i}_y\right)$$

$$\vec{r} \cdot \vec{F} = \frac{\partial}{\partial x} (x^{2}yz) + \frac{\partial}{\partial y} (xz) = 2xyz$$

$$\vec{r} \cdot \vec{r} = \frac{\partial}{\partial x} (x^{2}yz) + \frac{\partial}{\partial y} (xz) = 2xyz$$

$$\vec{r} \cdot \vec{r} = 2xyz$$

$$\vec{r} \cdot \vec{r} = \frac{\partial}{\partial x} (x^{2}yz) + \frac{\partial}{\partial y} (xz) = 2xyz$$

$$\vec{r} \cdot \vec{r} = \frac{\partial}{\partial x} (x^{2}z) - \frac{\partial}{\partial y} (y^{2}z^{2}) + \frac{\partial}{\partial z} (x^{2}z) = 2xyz^{2}$$

$$\vec{r} \cdot \vec{r} = 2xyz$$

$$\vec{r} \cdot \vec{r} = \frac{\partial}{\partial x} (x^{2}y) - \frac{\partial}{\partial y} (x^{2}y^{2}) + 24x^{2}y^{2}z^{2})$$

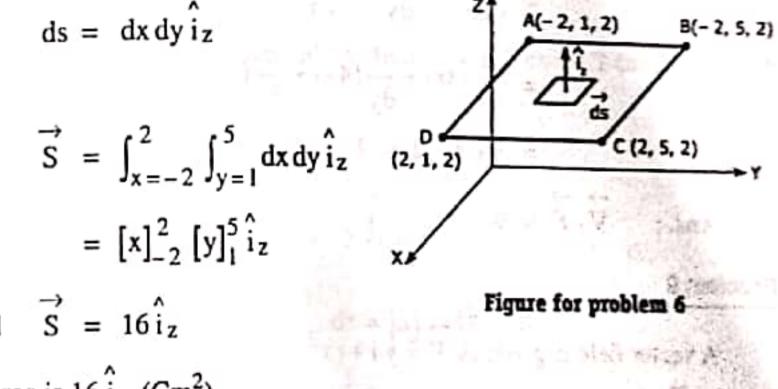
$$\vec{r} = 2xz - 4yz^{2} + xy^{2}$$

$$\vec{r} \cdot \vec{r} = 2xyz + 2xy^{2} + 2x^{2}y^{2}z^{2}$$

$$\vec{r} = 2xz - 4yz^{2} + xy^{2}$$

$$\vec{r} = 2xz - 4yz^{2} + 2x^{2}$$

$$\vec{r} = 2xz - 2x^{2} + 2x^{2}$$

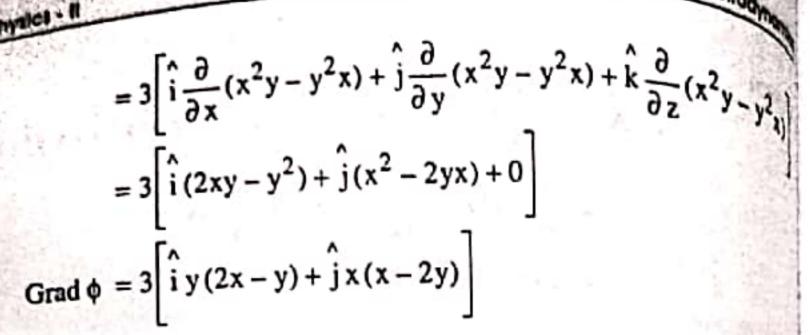

$$\vec{r} = 2xz - 2x^{2} + 2x^{2}$$

$$\vec{r} = 2xz - 2x^{2} + 2x^{2}$$

$$\vec{r} = 2x^{2} + 2x$$

 $\overrightarrow{A} = x^2 z \hat{i} - 2 y^2 z^2 \hat{j} + x y^2 z \hat{k}, \text{ find } \overrightarrow{\nabla} \cdot \overrightarrow{A} \text{ at point } (1, -1, 1).$ (M.U. May 2017)

x ≤ 2 cm,




2, -1).

10

Grad 
$$\phi = \left(\hat{i}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y} + \hat{k}\frac{\partial}{\partial z}\right) \cdot 3(x^2y - y^2x)$$

(3-22)



At point (1, -2, -1), this becomes,

$$Grad \phi = -24i + 15j.$$

### Problem 8

Calculate the divergence of the vector field  $\vec{F} = 3x\hat{i} + 4y\hat{j} + 2z\hat{k}$ . Solution :

Divergence of  $\vec{F} = \nabla \cdot \vec{F}$  $= \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right) \cdot \left(3x\hat{i} + 4y\hat{j} + 2z\hat{k}\right)$  $= \frac{\partial}{\partial x}(3x) + \frac{\partial}{\partial y}(4y) + \frac{\partial}{\partial z}(2z)$ = 3 + 4 + 2 = 9 $\overrightarrow{\nabla} \cdot \overrightarrow{F} = 9$ 

Ans.:

### Problem 9

A vector field is given as  $\vec{F} = y\hat{i} + (x^2 + y^2)\hat{j} + (yz + zx)\hat{k}$ . Find (i) Div.  $\vec{F}$ . → (ii) Curl F.

Solution :

Div. 
$$\overrightarrow{F} = \overrightarrow{\nabla} \cdot \overrightarrow{F}$$
  

$$= \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right) \cdot \left(\hat{y}\hat{i} + (x^2 + y^2)\hat{j} + (yz + zx)\hat{k}\right)$$

$$= \frac{\partial}{\partial x}(y) + \frac{\partial}{\partial y}(x^2 + y^2) + \frac{\partial}{\partial z}(yz + zx)$$

...

Problem 10  $-1 \text{ cm} \le z \le 3 \text{ cm}.$ Solution :

The vol

### Problem 11

coordinates. Solution :

Diverg

...

(11)

Electron

Electrodynamics

Div. 
$$F = 0 + 2y + (y + x) = x + 3y$$
  
Curl  $\vec{F} = \vec{\nabla} \times \vec{F}$   

$$= \begin{vmatrix} \hat{i}_x & \hat{i}_y & \hat{i}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & x^2 + y^2 & yz + zx \end{vmatrix}$$

$$= \hat{i} \left[ \frac{\partial}{\partial y} (yz + zx) - \frac{\partial}{\partial z} (x^2 + y^2) \right] + \hat{j} \left[ \frac{\partial}{\partial z} (y) - \frac{\partial}{\partial x} (yz + zx) \right]$$

$$+ \hat{k} \left[ \frac{\partial}{\partial x} (x^2 + y^2) - \frac{\partial}{\partial y} (y) \right]$$

$$= \hat{i} z + \hat{j} (-z) + \hat{k} (2x - 1)$$
Curl  $\vec{F} = z \hat{i} - z \hat{j} + (2x - 1) \hat{k}$ 

Find the volume of a block bounded by 1 cm  $\le x \le 3$  cm, -2 cm  $\le y \le 4$  cm.

lume is V = 
$$\int_{3}^{4} dV = \int_{x=1}^{3} \int_{y=-2}^{4} \int_{z=-1}^{3} dx \, dy \, dz$$
  
=  $\int_{1}^{3} dx \int_{-2}^{4} dy \int_{-1}^{3} dz = [x]_{1}^{3} [y]_{-2}^{4} [z]_{-1}^{3}$   
=  $2 \times 6 \times 4 = 48 \text{ cm}^{3}$ 

Find the divergence and curl of the field  $\vec{F} = 30\hat{i}_x + 2xy\hat{i}_y + 5xz^2\hat{i}_z$  in Cartesian

gence, 
$$\vec{\nabla} \cdot \vec{F} = \left(\frac{\partial}{\partial x}\hat{i}_x + \frac{\partial}{\partial y}\hat{i}_y + \frac{\partial}{\partial z}\hat{i}_z\right) \cdot \left(30\hat{i}_x + 2xy\hat{i}_y + 5xz^2\hat{i}_z\right)$$

wering Physics - It Electrodyne (3-24)  $= \frac{\partial}{\partial x}(30) + \frac{\partial}{\partial y}(2xy) + \frac{\partial}{\partial z}(2xz^2) = 2x + 10xz$ Cur ÷  $\vec{\nabla} \cdot \vec{F} = 2x(1+5z)$ At the origin (0, 0, 0)  $\mathbf{Curl}, \vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i}_x & \hat{i}_y & \hat{i}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = -5z^2 \hat{i}_y + 2y \hat{i}_z$   $\mathbf{Curl}, \vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{i}_x & \hat{i}_y & \hat{i}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$ problem 13 If  $\phi$  is a scalar field and A is a vector field, prove that **Results:**  $\vec{\nabla} \cdot \vec{F} = 2x (1 + 5z)$  $\vec{\nabla} \times \vec{F} = -5z^2 \hat{i}_y + 2y \hat{i}_z$ Solution : Given,  $\vec{A} = y \cos ax \hat{i}_x + (y + e^x)\hat{i}_z$ . Find curl  $\vec{A}$  at the origin. Problem 12 Solution : In Cartesian coordinates  $\operatorname{Curl} \mathbf{A} = \nabla \times \overrightarrow{\mathbf{A}} = \begin{vmatrix} \hat{\mathbf{i}}_{\mathbf{x}} & \hat{\mathbf{i}}_{\mathbf{y}} & \hat{\mathbf{i}}_{\mathbf{z}} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ A_{\mathbf{x}} & A_{\mathbf{y}} & A_{\mathbf{z}} \end{vmatrix}$ → ▼×(¢ In this case,  $A_x = y \cos ax$ ,  $A_y = 0$ ,  $A_z = y + e^x$ .  $\operatorname{Curl} \overrightarrow{A} = \begin{vmatrix} \widehat{i}_{x} & \widehat{i}_{y} & \widehat{i}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{A_{x}} & 0 & A_{z} \end{vmatrix}$ = i  $= \frac{\partial A_z}{\partial y}\hat{i}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right)\hat{i}_y - \frac{\partial A_x}{\partial y}\hat{i}_z$ Curl  $\vec{A} = \frac{\partial}{\partial y}(y + e^x)\hat{i}_x$  $+ \left[ \frac{\partial}{\partial z} (y \cos ax) - \frac{\partial}{\partial x} (y + e^x) \right] \hat{i}_y - \frac{\partial}{\partial y} (y \cos ax) \hat{i}_z$ 

Electrodynamics

$$\vec{A} = \vec{i}_x + [0 - e^x]\vec{i}_y - \cos ax \vec{i}_z$$
  
$$\vec{A} = \vec{i}_x - e^x \vec{i}_y - \cos ax \vec{i}_z$$

$$\overrightarrow{A} = \overrightarrow{i}_x - \overrightarrow{i}_y - \overrightarrow{i}_z$$

$$\vec{\nabla} \times (\phi \vec{A}) = \phi (\nabla \times \vec{A}) + (\vec{\nabla} \phi) \times \vec{A}.$$

$$\begin{split} \vec{\phi} \overrightarrow{A} &= \phi(A_x \overrightarrow{i} + A_y \overrightarrow{j} + A_z \overrightarrow{k}) \\ &= \phi A_x \overrightarrow{i} + \phi A_y \overrightarrow{j} + \phi A_z \overrightarrow{k} \\ \vec{\phi} \overrightarrow{A}) &= \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \phi A_x & \phi A_y & \phi A_z \end{vmatrix} \\ &= \overrightarrow{i} \left[ \frac{\partial}{\partial y} (\phi A_z) - \frac{\partial}{\partial z} (\phi A_y) \right] + \overrightarrow{j} \left[ \frac{\partial}{\partial z} (\phi A_x) - \frac{\partial}{\partial x} (\phi A_z) \right] \\ &+ \overrightarrow{k} \left[ \frac{\partial}{\partial x} (\phi A_y) - \frac{\partial}{\partial y} (\phi A_x) \right] \\ &+ \overrightarrow{k} \left[ \frac{\partial}{\partial x} (\phi A_y) - \frac{\partial}{\partial y} (\phi A_x) \right] \\ &+ \overrightarrow{j} \left[ \frac{\partial \phi}{\partial z} A_x + \frac{\partial A_x}{\partial z} - \frac{\partial \phi}{\partial x} A_z - \phi \frac{\partial A_z}{\partial x} \right] \\ &+ \overrightarrow{k} \left[ \frac{\partial \phi}{\partial x} A_y + \phi \frac{\partial A_y}{\partial z} - \frac{\partial \phi}{\partial y} A_z - \phi \frac{\partial A_y}{\partial x} \right] \\ &+ \overrightarrow{k} \left[ \frac{\partial \phi}{\partial x} A_y + \phi \frac{\partial A_y}{\partial x} - \frac{\partial \phi}{\partial y} A_x - \phi \frac{\partial A_y}{\partial y} \right] \end{split}$$

(3-26)

$$\nabla \times \vec{A} = \hat{i} \left[ \hat{i} \left( \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{j} \left( \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{k} \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_y}{\partial y} \right) \right] \\ + \hat{i} \left[ A_z \frac{\partial \phi}{\partial y} - A_y \frac{\partial \phi}{\partial z} + \hat{j} \left( A_x \frac{\partial \phi}{\partial z} - A_z \frac{\partial \phi}{\partial x} \right) + \hat{k} \left( A_y \frac{\partial \phi}{\partial x} - A_x \right) \right] \\ Now, \quad \nabla \times \vec{A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} \\ = \hat{i} \left( \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{j} \left( \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{k} \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_y}{\partial y} \right) \right] \\ \left| \hat{A} - \hat{A} - \hat{A} \right|$$

and 
$$(\vec{\nabla}\phi) \times \vec{A} = \begin{vmatrix} i & j & k \\ \frac{\partial \phi}{\partial x} & \frac{\partial \phi}{\partial y} & \frac{\partial \phi}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$
  
$$= \hat{i} \left( A_z \frac{\partial \phi}{\partial y} - A_y \frac{\partial \phi}{\partial z} \right) + \hat{j} \left( A_x \frac{\partial \phi}{\partial z} - A_z \frac{\partial \phi}{\partial x} \right) + \hat{k} \left( A_y \frac{\partial \phi}{\partial x} - A_z \frac{\partial \phi}{\partial y} \right)$$

Hence,

$$\vec{\nabla} \times (\phi \vec{A}) = \phi(\nabla \times \vec{A}) + (\nabla \phi) \times \vec{A}$$
. Proved

Problem 14

Show that  $\vec{F} = (x + i)\hat{i} + (x + z)\hat{j} + (y - z)\hat{k}$  represents a conservative field. Solution :

For a conservative field,  $\nabla \times \overrightarrow{F} = 0$ .

$$\vec{\nabla} \times \vec{F} = \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (x+y) & (x+z) & (y-z) \end{pmatrix}$$

problem 15

Electrody

Solution :

We hav

Ans.:

Ingineering Physics - II

(3-27)

$$= \hat{i} \left[ \frac{\partial}{\partial y} (y - z) - \frac{\partial}{\partial z} (x + z) \right] + \hat{j} \left[ \frac{\partial}{\partial z} (x + y) - \frac{\partial}{\partial x} (y - z) \right] \\ + \hat{k} \left[ \frac{\partial}{\partial x} (x + z) - \frac{\partial}{\partial y} (x + y) \right] \\ = \hat{i} (1 - 1) + \hat{j} (0) + \hat{k} (1 - 1)$$

Hence,  $\vec{F}$  is a conservative field.

Find the divergence and curl of a vector  $\vec{A} = x^2 y \hat{i} + (x - y) \hat{k}$ .

$$\begin{split} & \tilde{\mathbf{A}} = \mathbf{x}^{2}\mathbf{y}\,\hat{\mathbf{i}} + (\mathbf{x} - \mathbf{y})\,\hat{\mathbf{k}}, \\ & \text{Div}\,\,\vec{\mathbf{A}} = \vec{\nabla}\cdot\vec{\mathbf{A}} \\ &= \left(\frac{\partial}{\partial \mathbf{x}}\,\hat{\mathbf{i}} + \frac{\partial}{\partial \mathbf{y}}\,\hat{\mathbf{j}} + \frac{\partial}{\partial \mathbf{z}}\,\hat{\mathbf{k}}\right) \cdot [\mathbf{x}^{2}\mathbf{y}\,\hat{\mathbf{i}} + (\mathbf{x} - \mathbf{y})\,\hat{\mathbf{k}}] \\ &= \frac{\partial}{\partial \mathbf{x}}\,(\mathbf{x}^{2}\mathbf{y}) + \frac{\partial}{\partial \mathbf{z}}\,(\mathbf{x} - \mathbf{y}) = 2\mathbf{x}\mathbf{y} \\ & \text{Curl}\,\,\vec{\mathbf{A}} = \vec{\nabla}\times\vec{\mathbf{A}} = \left| \begin{array}{c} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \\ \mathbf{x}^{2}\mathbf{y} & \mathbf{0} & \mathbf{x} - \mathbf{y} \end{array} \right| \\ &= \hat{\mathbf{i}}\left[\frac{\partial}{\partial \mathbf{y}}\,(\mathbf{x} - \mathbf{y})\right] + \hat{\mathbf{j}}\left[\frac{\partial}{\partial \mathbf{z}}\,(\mathbf{x}^{2}\mathbf{y}) - \frac{\partial}{\partial \mathbf{x}}\,(\mathbf{x} - \mathbf{y})\right] + \hat{\mathbf{k}}\left[-\frac{\partial}{\partial \mathbf{y}}\,(\mathbf{x}^{2}\mathbf{y})\right] \\ &= \hat{\mathbf{i}}\,(-1) + \hat{\mathbf{j}}\,(-1) + \hat{\mathbf{k}}\,(\mathbf{x}^{2}) = -\hat{\mathbf{i}} - \hat{\mathbf{j}} - \mathbf{x}^{2}\,\hat{\mathbf{k}} \end{split}$$

SISS in a dueda

# Problem 16

Prove that the divergence of the electric field and that of electric flux density in charge free region is zero.

### Solution :

Data : In a charge free region, the charge density,  $\rho = 0$ .

 $\nabla \cdot \mathbf{D} = \mathbf{\rho}$ : Gauss' law of electrostatics Formula :

Calculations :

 $\vec{\nabla} \cdot \vec{D} = \vec{\nabla} \cdot \epsilon_0 \vec{E} = \epsilon_0 \vec{\nabla} \cdot \vec{E} = 0$ 

### Problem 17

Given that  $\vec{D} = 10x \hat{i}_x (C/m^2)$ . Determine the flux crossing  $1 \text{ m}^2$  area that is normal to the x-axis at x = 3 m.

Solution :

**Data** :  $D_x = 10x$ , x = 3 m

**Formula**: Using Gauss' law, Total flux =  $\int \vec{D} \cdot ds$ 

Calculations :

$$\int \vec{D} \cdot \vec{ds} = \int (\hat{i}_x D_x + \hat{i}_y D_y + \hat{i}_z D_z) \cdot (\hat{i}_x dS_x + \hat{i}_y dS_y + \hat{i}_z dS_z) = \int (D_x dS_x + D_y dS_y + D_z dS_z) = \int D_x dS_x = D_x \int dS_x = D_x \cdot (1) = 10x \cdot 1 = 10x$$

At x = 3 cm,

 $Flux = 10 \times 3 = 30$ 

Result : Flux = 30 C.

### Problem 18

Let  $\vec{D} = 2y^2 z^2 \hat{i}_x + 3xy^2 z^2 \hat{i}_y + 2xyz \hat{i}_z$  (pC/m<sup>2</sup>) in free space. Find : the total electrical flux passing through the surface  $x = 2, 0 \le y \le 2$  ml (i)  $0 \le z \le 2$  in a direction away from the origin.

the total charge contained in an elemental sphere of a radius 1 µm centered at Solution : ABCD is the plane specified. Its direction is is and an elementary plane dS on it is given by

Electron

Hence,

(ii)

(ii)

$$dS = dy dz \hat{i}_x$$

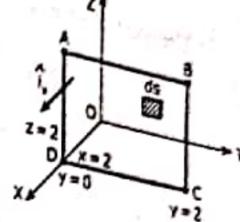
The electrical flux is given by

$$\phi = \int \vec{D} \cdot \vec{ds}$$
Figure for problem 18

(3-29)

For x = 2, 
$$\overrightarrow{D} = 2y^2 z^2 \hat{i}_x + 6y^2 z^2 \hat{i}_y + 4yz \hat{i}_z (pC/m^2)$$
  
Hence,  $\phi = \int_{y=0}^2 \int_{z=0}^2 (2y^2 z^2 \hat{i}_x + 6y^2 z^2 \hat{i}_y + 4yz \hat{i}_z) \cdot dy dz$   
 $= \int_{y=0}^2 \int_{z=0}^2 2y^2 z^2 dy dz$ 

$$\begin{bmatrix} \text{Since, } \hat{i}_{x} \cdot \hat{i}_{x} = 1, \quad \hat{i}_{y} \cdot \hat{i}_{x} = 0, \quad \hat{i}_{z} \cdot \hat{i}_{x} = 0 \end{bmatrix}$$
  
=  $2 \int_{0}^{2} y^{2} dy \int_{0}^{2} z^{2} dz = 2 \left( \frac{y^{3}}{3} \right) \Big|_{0}^{2} \left( \frac{z^{3}}{3} \right) \Big|_{0}^{2}$   
 $\phi = 2 \left( \frac{8}{3} \right) \left( \frac{8}{3} \right) = 14.22$ 


According to Gauss' law the volume charge, density,  $\rho_v$  is given by

$$\rho_{v} = \overrightarrow{\nabla} \cdot \overrightarrow{D} = \frac{\partial D_{x}}{\partial x} + \frac{\partial D_{y}}{\partial y} + \frac{\partial D_{z}}{\partial z}$$
$$= \frac{\partial}{\partial x} (2y^{2}z^{2}) + \frac{\partial}{\partial y} (3xy^{2}z^{2}) + \frac{\partial}{\partial z} (2xyz)$$
$$\rho_{v} = 0 + 6xyz^{2} + 2xy$$

At P (2, 2, 2), total charge is

$$\rho_{\rm v} = 104 \ ({\rm pC/m^3})$$

The radius of the elemental sphere in 1 µm.



The volume,  $\Delta V = \frac{4}{3} \pi (10^{-6})^3 \text{ m}^3$ 

The total charge contained in it is

 $Q = \rho_v \Delta V = 104 \cdot \frac{4}{3} \cdot \pi (10^{-6})^3$  $Q = 4.36 \times 10^{-28}$  C.

### Problem 19

If  $\vec{D} = 10x \hat{i} - 4y \hat{j} + Cz \hat{k}$ , where C is a constant, find the value of C using  $G_{all}$ 

law for a charge free region.

weeting Physics - II

## Solution :

Gauss' law :  $\nabla \cdot \mathbf{D} = \rho_v$  where  $\rho_v =$  volume charge density. In a charge free region  $\rho_v = 0$ . Hence,

$$\vec{\nabla} \cdot \vec{D} = 0$$

$$\left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right) \cdot (10x\hat{i} - 4y\hat{j} + Cz\hat{k}) = 0$$

$$\frac{\partial}{\partial x}(10x) + \frac{\partial}{\partial y}(-4y) + \frac{\partial}{\partial z}(Cz) = 0$$

$$10 - 4 + C = 0$$

Ans.:

### Problem 20

If the magnetic field  $\vec{H} = (3x \cos\beta + 6y \sin\alpha) \hat{k}$ , find the current density  $\vec{J}$  for state fields.

Solution :

Ampere's circuital law is 
$$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t}$$

C = -6

For steady fields 
$$\frac{\partial \vec{D}}{\partial t} = 0$$
.

problem 21  $by V = 50 x^2 yz + 20 y^2.$ Solution :

÷

Elecho

By Gauss' 1

→ E =

= → D =

 $\rho_v =$ 

At P (1, 2, 1

Problem 22

Given that Solution :

For free spa

$$\vec{J} = \vec{\nabla} \times \vec{H} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & 0 & (3x\cos\beta + 6y\sin\alpha) \end{vmatrix}$$

$$= \hat{i} \frac{\partial}{\partial y} (3x\cos\beta + 6y\sin\alpha) - \hat{j} \frac{\partial}{\partial x} (3x\cos\beta + 6y\sin\alpha)$$

$$= 6\sin\alpha \hat{i} - 3\cos\beta \hat{j}$$

Find the volume charge density,  $\rho_v$  at P (1, 2, 3) in free space if the potential is given

$$\vec{\nabla} \cdot \vec{\nabla} \cdot \vec{D} = \rho_{v}, \quad \vec{D} = \epsilon_{o} \vec{E}, \quad \vec{E} = -\vec{\nabla} V$$

$$= -\vec{\nabla} V = -\left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right) \cdot (50x^{2}y + 20y^{2})$$

$$= -[100 \text{ xy} \hat{z}\hat{i} + (50x^{2}y + 40y)\hat{j} + 50x^{2}y\hat{k}]$$

$$= -\epsilon_{o} [100 \text{ xy} \hat{z}\hat{i} + (50x^{2}y + 40y)\hat{j} + 50x^{2}y\hat{k}]$$

$$= \vec{\nabla} \cdot \vec{D}$$

$$= -\epsilon_{o} \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right) \cdot [100 \text{ xy} \hat{z}\hat{i} + (50x^{2}y + 40y)\hat{j} + 50x^{2}y\hat{k}]$$

$$= -\epsilon_{o} [100 \text{ yz} + 40]$$

$$= -\epsilon_{o} [100 \text{ yz} + 40]$$

24.0

1 125 3 1855

1、物本目初之前

$$\vec{H} = H_m e^{j(\omega t + \beta z)} \hat{i}$$
 (A/m) in free space. Find  $\vec{E}$ .

ace, 
$$\overrightarrow{\nabla} \times \overrightarrow{H} = \frac{\overrightarrow{\partial D}}{\partial t}$$

Now,  $\vec{\nabla} \times \vec{H} = \begin{vmatrix} \vec{J} & \vec{J} & \vec{K} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{vmatrix}$ Given:  $H_x = H_m e^{j(\omega t + \beta z)}$ ,  $H_y = 0$ ,  $H_z = 0$ .  $\vec{\nabla} \times \vec{H} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & 0 & 0 \end{vmatrix}$  $=\hat{i}[0-0]+\hat{j}\left[\frac{\partial H_x}{\partial z}-0\right]+\hat{k}\left[0-\frac{\partial H_x}{\partial y}\right]$  $= \hat{j}\frac{\partial}{\partial z}(H_m e^{j(\omega t + \beta z)}) - \hat{k}\frac{\partial}{\partial v}(H_m e^{j(\omega t + \beta z)})$  $\overrightarrow{\nabla} \times \overrightarrow{H} = j \beta H_m e^{j(\omega t + \beta z)} j$  $\frac{\partial D}{\partial t} = j \beta H_m e^{j(\omega t + \beta z)} \hat{j}$  $\vec{D} = j\beta H_m \int e^{j(\omega t + \beta z)} dt \cdot \hat{j}$  $=\frac{j\beta H_{m}}{\omega}\cdot e^{j(\omega t+\beta z)}\hat{j}$  $\vec{D} = \frac{j\beta}{\omega} \cdot \vec{H} = \frac{j\beta}{\omega} H_m e^{j(\omega t + \beta z)} \hat{j}$ Again  $\overrightarrow{D} = \in_0 \overrightarrow{E}$  in free space.  $\vec{E} = \frac{j\beta H_m}{\omega \epsilon_0} \cdot e^{j(\omega t + \beta z)} \hat{j}$ So, Problem 23

Find the divergence and curl of a vector field  $\vec{A} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ . Solution :

Engineering Physics - II

D

iv 
$$A = \nabla \cdot A = \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right) \cdot (x^2\hat{i} + y^2\hat{j} + z^2\hat{k})$$
  

$$= \frac{\partial}{\partial x}(x^2) + \frac{\partial}{\partial y}(y^2) + \frac{\partial}{\partial z}(z^2)$$

$$= 2x + 2y + 2z$$

### Problem 24

A region is specified by the potential function  $\phi = 4x^2 + 3y^2 - 9z^2$ . Calculate the electric field strength at any point (3, 4, 5) in this region. Solution :

$$\vec{E} = -\vec{\nabla}\phi = -\left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right)\phi$$
$$= -\left(\frac{\partial\phi}{\partial x}\hat{i} + \frac{\partial\phi}{\partial y}\hat{j} + \frac{\partial\phi}{\partial z}\hat{k}\right)$$

Let

$$\vec{E} = E_x \hat{i} + E_y \hat{j} + E_z \hat{k}$$

Here,

$$E_{x} = -\frac{\partial \phi}{\partial x} = -\frac{\partial}{\partial x}(4x^{2} + 3y^{2} - 9z^{2}) = 8x$$

$$E_{y} = -\frac{\partial \phi}{\partial y} = -\frac{\partial}{\partial y}(4x^{2} + 3y^{2} - 9z^{2}) = 6y$$

$$E_{z} = -\frac{\partial \phi}{\partial z} = -\frac{\partial}{\partial z}(4x^{2} + 3y^{2} - 9z^{2}) = -18z$$

Now, 
$$\vec{\nabla} \times \vec{H} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{vmatrix}$$
  
Given:  $H_x = H_m e^{j(tox + \beta z)}, H_y = 0, H_z = 0.$   
 $\vec{\nabla} \times \vec{H} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$ 

20 A. M. M. M.

11.00

$$\begin{bmatrix} H_x & 0 & 0 \end{bmatrix}$$
  
=  $\hat{i}[0-0] + \hat{j}\left[\frac{\partial H_x}{\partial z} - 0\right] + \hat{k}\left[0 - \frac{\partial H_x}{\partial y}\right]$   
=  $\hat{j}\frac{\partial}{\partial z}(H_m e^{j(\omega t + \beta z)}) - \hat{k}\frac{\partial}{\partial y}(H_m e^{j(\omega t + \beta z)})$ 

$$\vec{\nabla} \times \vec{H} = j \beta H_m e^{j(\omega t + \beta z)} \hat{j}$$
$$\frac{\partial \vec{D}}{\partial t} = j \beta H_m e^{j(\omega t + \beta z)} \hat{j}$$

ω

$$\vec{\mathbf{D}} = \mathbf{j} \, \boldsymbol{\beta} \mathbf{H}_{m} \int e^{\mathbf{j}(\omega t + \beta z)} dt \cdot \hat{\mathbf{j}}$$
$$= \frac{\mathbf{j} \, \boldsymbol{\beta} \mathbf{H}_{m}}{\mathbf{j}(\omega t + \beta z)} \hat{\mathbf{j}}$$

$$\vec{D} = \frac{j\beta}{\omega} \cdot \vec{H} = \frac{j\beta}{\omega} H_m e^{j(\omega t + \beta z)} \hat{j}$$

Again  $\vec{D} = \epsilon_0 \vec{E}$  in free space.

$$\vec{E} = \frac{j\beta H_m}{\omega \epsilon_0} \cdot e^{j(\omega t + \beta z)} \hat{j}$$

## Problem 23

Manual Constant

So,

Find the divergence and curl of a vector field  $\vec{A} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ . Solution :

sering Physics - II

$$Div \vec{A} = \vec{\nabla} \cdot \vec{A} = \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right) \cdot (x^{2}\hat{i} + y^{2}\hat{j} + z^{2}\hat{k})$$

$$= \frac{\partial}{\partial x}(x^{2}) + \frac{\partial}{\partial y}(y^{2}) + \frac{\partial}{\partial z}(z^{2})$$

$$= 2x + 2y + 2z$$

$$Curl \vec{A} = \vec{\nabla} \times \vec{A} = \left| \begin{array}{c} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2} & y^{2} & z^{2} \end{array} \right|$$

$$= \hat{i} \left[ \frac{\partial}{\partial y}(z^{2}) - \frac{\partial}{\partial z}(y^{2}) \right] + \hat{j} \left[ \frac{\partial}{\partial z}(x^{2}) - \frac{\partial}{\partial x}(z^{2}) \right]$$

$$= 0$$

# problem 24

A region is specified by the potential function  $\phi = 4x^2 + 3y^2 - 9z^2$ . Calculate the electric field strength at any point (3, 4, 5) in this region.

$$\vec{E} = -\vec{\nabla} \phi = -\left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right)\phi$$

$$= -\left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right)$$

$$\vec{E} = E_x\hat{i} + E_y\hat{j} + E_z\hat{k}$$

$$E_x = -\frac{\partial}{\partial x}\phi = -\frac{\partial}{\partial x}(4x^2 + 3y^2 - 9z^2) = 8x$$

$$E_{y} = -\frac{\partial \phi}{\partial y} = -\frac{\partial}{\partial y}(4x^{2} + 3y^{2} - 9z^{2}) = 6y$$
$$E_{z} = -\frac{\partial \phi}{\partial z} = -\frac{\partial}{\partial z}(4x^{2} + 3y^{2} - 9z^{2}) = -18z$$

TH' IN A STORE

231.1

CONTRACTOR !!

Here,

Let

$$\vec{E} = 8x\hat{i} + 6y\hat{j} - 18zk$$

At point (3, 4, 5).

$$\vec{E} = 24\hat{i} + 24\hat{j} - 90\hat{k}$$

# Problem 25

Determine whether or not the following pair of electric and magnetic fields satisfy Maxwell's equation in free space.

 $\vec{E} = 2y\hat{j},$ H = 5x i

Solution :

First equation :  $\nabla \cdot \mathbf{D} = 0$ 

$$\vec{\nabla} \cdot \vec{D} = \epsilon_0 \vec{\nabla} \cdot \vec{E} = \epsilon_0 \left( \frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \right) \cdot 2y \hat{j}$$
$$= \epsilon_0 \frac{\partial}{\partial y} (2y) = 2\epsilon_0 \neq 0$$

Hence, not satisfied.

Second equation :  $\nabla \cdot \overrightarrow{B} = 0$ 

$$\vec{\nabla} \cdot \vec{B} = \mu_0 \vec{\nabla} \cdot \vec{H} = \mu_0 \left( \frac{\partial}{\partial x} \hat{i} + \frac{\partial}{\partial y} \hat{j} + \frac{\partial}{\partial z} \hat{k} \right) \cdot (5x \hat{i})$$
$$= \mu_0 \frac{\partial}{\partial x} (5x) = 5\mu_0 \neq 0$$

Hence, not satisfied.

Third

equation: 
$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
  
L.H.S.  $= \vec{\nabla} \times \vec{E} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & 2y & 0 \end{vmatrix}$ 

Now.

...

Fourth eq

Now,

...

*.*..

Problem 26

Given E Solution :

$$=\hat{i}\left[0-\frac{\partial}{\partial z}(2y)\right]+\hat{j}[0-0]+\hat{k}\left[\frac{\partial}{\partial x}(2y)-0\right]$$

L.H.S. = 0

R.H.S. = 
$$-\frac{\partial \vec{B}}{\partial t} = -\mu_0 \frac{\partial \vec{H}}{\partial t} = -\mu_0 \frac{\partial \vec{H}}{\partial t} = -\mu_0 \frac{\partial \vec{H}}{\partial t} = 0$$

 $\therefore$  L.H.S. = R.H.S.

Hence, third equation is satisfied.

quation : 
$$\overrightarrow{\nabla} \times \overrightarrow{H} = \frac{\partial \overrightarrow{D}}{\partial t}$$

L.H.S. 
$$= \overrightarrow{\nabla} \times \overrightarrow{H} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & 5x & 0 & 0 \end{vmatrix}$$
  
 $= \widehat{i}[0-0] + + \widehat{j}\left[\frac{\partial}{\partial z}(5x) - 0\right] + \widehat{k}\left[0 - \frac{\partial}{\partial y}(5x)\right]$ 

L.H.S. = 0

R.H.S. 
$$=\frac{\partial D}{\partial t} = \epsilon_0 \frac{\partial}{\partial t} \overrightarrow{D} = \epsilon_0 \frac{\partial}{\partial t} (2yi) = 0$$

L.H.S. = R.H.S.

Hence, fourth equation is satisfied.

$$\vec{A} = E_m \sin(\omega t - \beta z) \hat{i}_y$$
 in free space. Find  $\vec{D}$ ,  $\vec{B}$  and  $\vec{H}$ .

-1/01200

In free space,  $\varepsilon_r = 1$ ,  $\mu_r = 1$ .

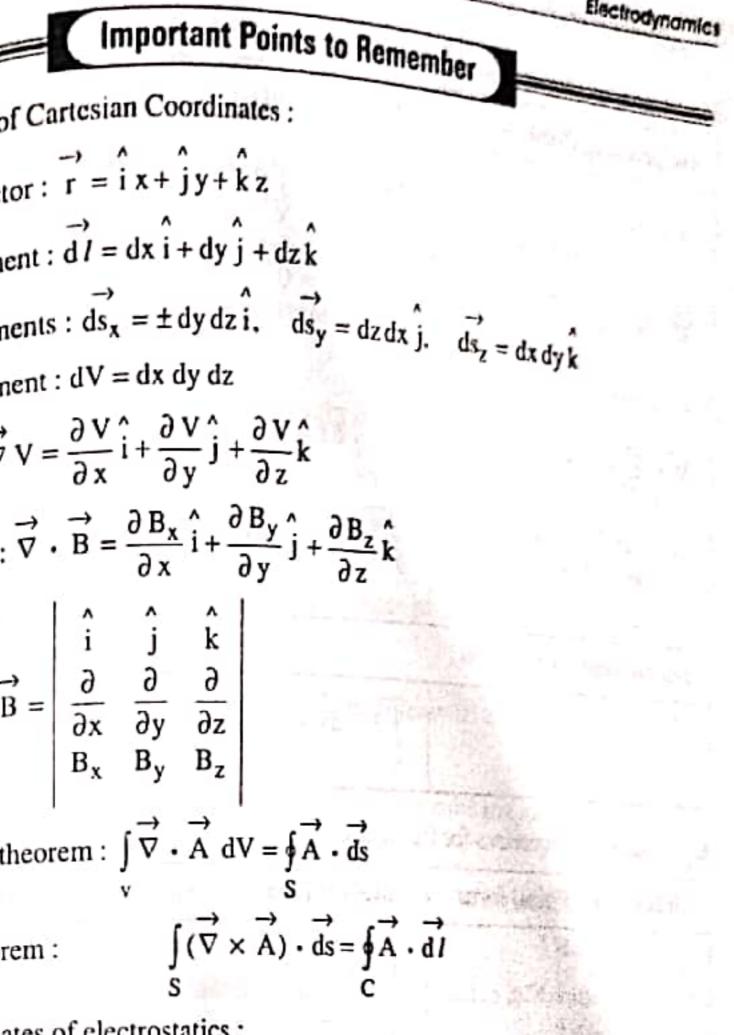
 $\vec{D} = \epsilon_0 \vec{E} = \epsilon_0 E_m \sin(\omega t - \beta z) \hat{i}_y$  (C/m<sup>2</sup>) According to Maxwell's equation, for Faraday's law

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
Hence,  $\frac{\partial \vec{B}}{\partial t} = -\vec{\nabla} \times \vec{E}$ 

$$\frac{\partial \vec{B}}{\partial t} = -\vec{\nabla} \times \vec{E}$$

$$\frac{\partial \vec{B}}{\partial t} = \begin{vmatrix} \hat{i}_x & \hat{i}_y & \hat{i}_z \\ \frac{\partial a}{\partial x} & \frac{\partial a}{\partial y} & \frac{\partial a}{\partial z} \\ E_x & E_y & E_z \end{vmatrix}$$
Given  $\vec{E} = E_y \hat{i}_y$ , with  $E_x = 0$ ,  $E_z = 0$ ,  $E_y = E_m \sin(\omega t - \beta z)$ .
$$\frac{\partial \vec{B}}{\partial t} = \begin{vmatrix} \hat{i}_x & \hat{i}_y & \hat{i}_z \\ \frac{\partial a}{\partial x} & \frac{\partial a}{\partial y} & \frac{\partial a}{\partial z} \\ 0 & E_y & 0 \end{vmatrix} = \frac{\partial E_y}{\partial z} \hat{i}_x + \frac{\partial E_y}{\partial x} \hat{i}_z$$
Given  $\vec{E} = E_n \hat{i}_x \cos(\omega t - \beta z)$ .
$$\frac{\partial \vec{E}}{\partial t} = -E_m \beta \cos(\omega t - \beta z)$$
Hence,  $\frac{\partial \vec{E}}{\partial t} = -E_m \beta \cos(\omega t - \beta z) \hat{i}_x$ 

$$\frac{\partial \vec{E}}{\partial t} = -E_m \beta \cos(\omega t - \beta z) \hat{i}_x$$


$$\vec{B} = -\int E_m \beta \cos(\omega t - \beta z) \hat{i}_x$$

$$\vec{B} = -\int E_m \beta \sin(\omega t - \beta z) \hat{i}_x (A/m)$$

$$\vec{\nabla} \times \vec{B} = 0,$$

$$\vec{\nabla} \times \vec{E} = 0,$$





tes of electrostatics :

 $\oint \vec{D} \cdot ds = Q$ Gauss' law of electrostatics : S  $\int \vec{B} \cdot \vec{ds} = 0$ : Gauss' law of magnetostatic  $\oint_{\mathbf{C}} \vec{\mathbf{E}} \cdot \vec{\mathbf{d}l} = 0$ : Faraday's law  $\vec{J}$ ,  $\vec{f} \cdot \vec{dl} = \mu_0 \mathbf{l}$  : Ampere's circuital law

| 1.5.98<br>1.5.98                         |                                                        | (3-38)                                                                   | Elast                                   | Physics - II                                                |
|------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|
| A. A | Engineering Physics - II<br>5. Maxwell's equations     | at the Property of the second second                                     | No. | maineering physics - II                                     |
|                                          | 5 Maxwell (Point) form                                 | Integral form                                                            | Significance                            | Explain Cartesi                                             |
| No.                                      | $\vec{\nabla} \cdot \vec{D} = \rho$                    | $\oint \vec{D} \cdot \vec{ds} = \int_{V} \rho  dv$                       | Gauss's law for<br>electrostatics       | Write down the                                              |
|                                          | $\vec{\nabla} \cdot \vec{B} = 0$                       | $\oint \vec{B} \cdot \vec{ds} = 0$                                       | Gauss's law for<br>magnetostatics       | J. J. What is gradier                                       |
|                                          | $\vec{\nabla} \times \vec{E} = -\vec{B}$               | $\oint \vec{E} \cdot \vec{dl} = -\int_{S} \vec{B} \cdot \vec{ds}$        | magnetic monopole)<br>Faraday's law     | 5. Define en                                                |
|                                          | $\vec{\nabla} \times \vec{H} = \vec{J} + \vec{D}$      | $\oint \vec{H} \cdot \vec{dl} = \int (\vec{J} + \vec{D}) \cdot \vec{ds}$ | Ampere's law                            | 6.<br>Express it in Ca                                      |
|                                          | Supplementary equation                                 |                                                                          |                                         | 7. Show that the c<br>Define static ar                      |
|                                          | $\vec{\nabla} \cdot \vec{J} = -\vec{\rho}$             | $\oint \vec{J} \cdot \vec{ds} = -\int_{V} \rho  dv$                      | Continuity equation                     | <ol> <li>Derive Gauss'</li> <li>9. Derive Gauss'</li> </ol> |
| 1                                        | <ol><li>Maxwell's equations for t</li></ol>            | free space                                                               |                                         | 10. State Gauss' la                                         |
|                                          | Differential (Point) form                              | Integral form                                                            | Significance                            | 11. State the differ                                        |
| /                                        | $\overrightarrow{\nabla} \cdot \overrightarrow{D} = 0$ | $\oint \vec{D} \cdot \vec{ds} = 0$                                       | Gauss's law for                         | 11.                                                         |

 $\overrightarrow{B} \cdot \overrightarrow{ds} = 0$ 

 $\oint \vec{\mathbf{H}} \cdot \vec{\mathbf{d}l} = \int$ 

 $\oint \vec{E} \cdot \vec{dl} = -\int \vec{B} \cdot \vec{ds}$ 

 $\overrightarrow{D} \cdot ds$ 

 $\nabla \cdot \mathbf{B} = \mathbf{0}$ 

 $\vec{\nabla} \times \vec{E} = -\vec{B}$ 

 $\vec{\nabla} \times \vec{H} =$ 

12. form.

electrostatics

Gauss's law for

magnetostatics

(non-existance of

Faraday's law

Ampere's law

magnetic monopole)

(3-39)

# **Review Questions**

sian coordinate system.

the surface vectors for (a) Cartesian, (b) Cylindrical, (c) Spherical [Refer § 4.2.1 (C), 4.2.2 (C), 4.2.3 (C)] What are scalar and vector fields? ent of a scalar field? Present it in Cartesian coordinates. Refer § 4.3 ]

cplain divergence of a vector field. Express it in Cartesian coordinates. ignificance of the curl of a vector field. Explain it with an example.

[Refer § 4.43] divergence of the curl of a vector is zero.

and time varying fields.

law for static electric field in differential and in integral form. [Refer § 4.6.1]

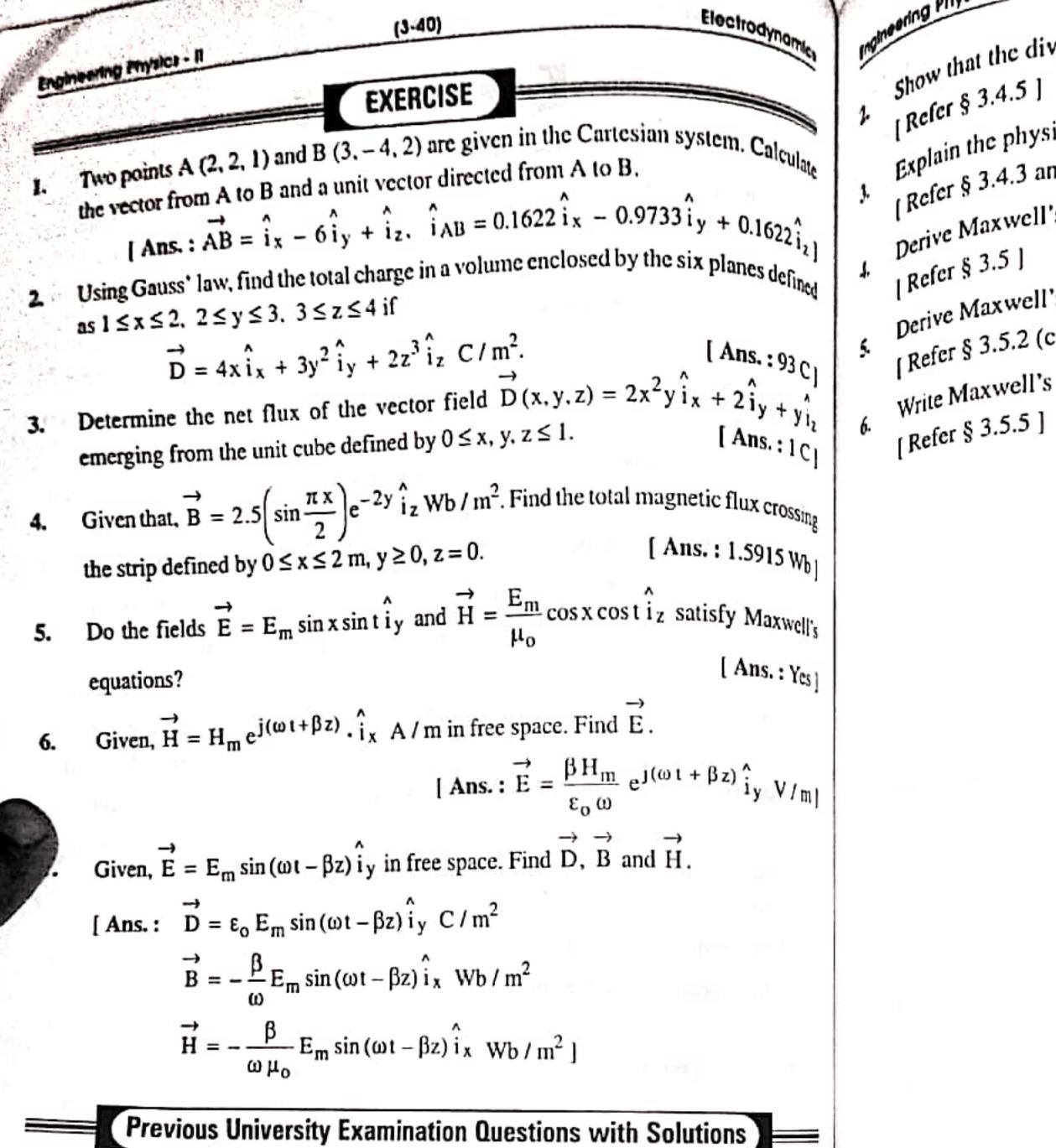
[Refer § 4.6.2 (A)] aw for static magnetic field in differential and in integral form.

[ Refer § 4.6.2 (B) ]

[Refer § 4.4.5]

Electrodynamics

erential and integral form of Faraday's law for static electric field. [Refer § 4.6.2 (C)]


Obtain Ampere's circuital law for static magnetic field in differential and integral [Refer § 4.6.2 (D)]

13. Write down the continuity equation and state its significance. [Refer § 4.6.2 (E)] 14. Obtain Faraday's law for time varying fields in differential and integral form. [Refer § 4.6.4 (A)]

15. Obtain Ampere's law for time varying fields in differential and integral form. [Refer § 4.6.4 (B)]

16. Derive point form of all Maxwell's equations and state their significance. [Refer § 4.6]

17. Derive integral form of all Maxwell's equations and state their significance. [Refer § 4.6]



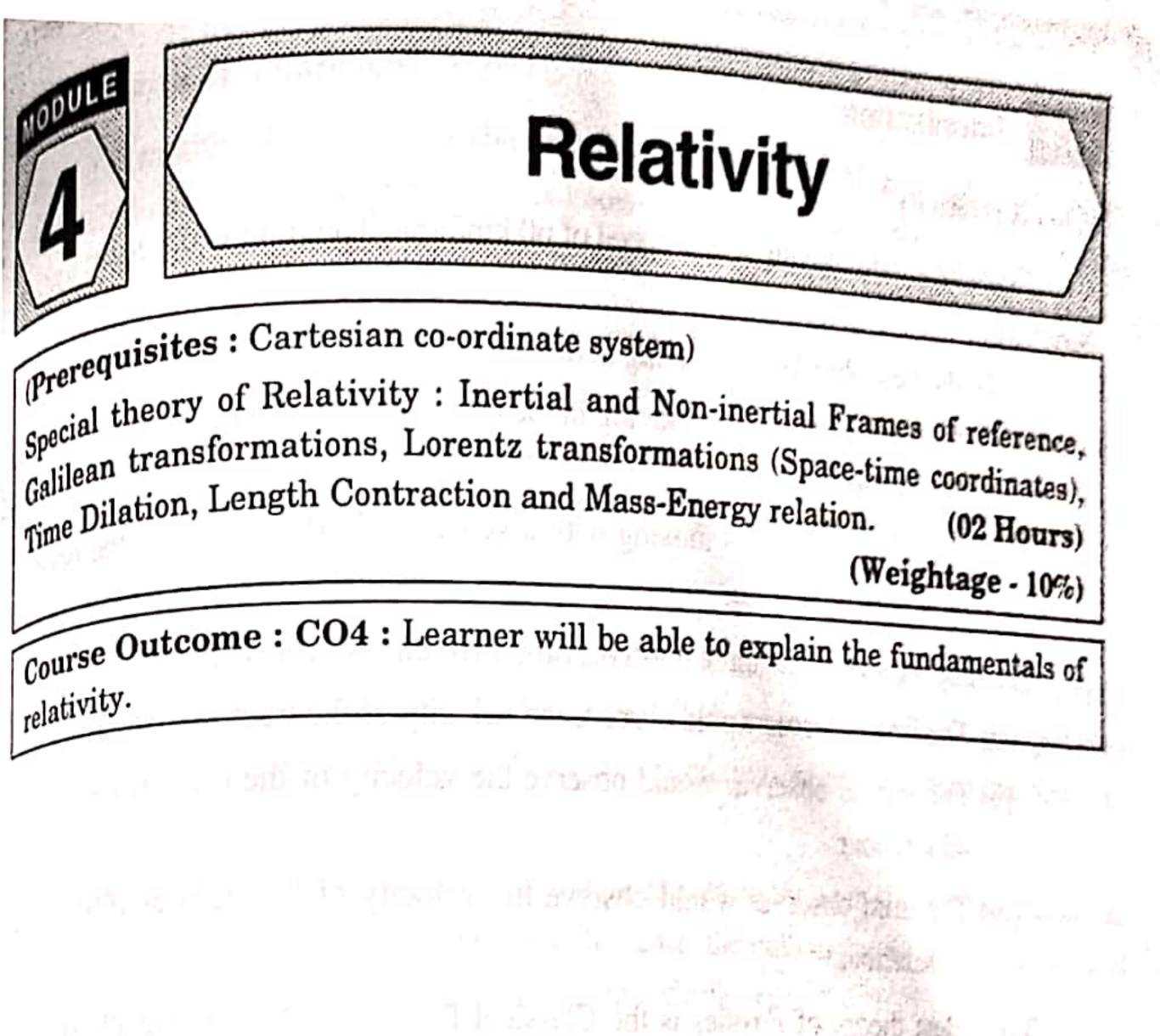
 What is divergence of a vector field? Express it in Cartesian Coordinate System. [Refer § 3.4.3]
 (M.U. May 2017) (3 m) 

 Bischool/Momiles

 Show that the divergence of a curl of a vector is zero.
 (M.U. Dec. 2017, 19) (3 m)

 Show that the divergence of divergence and curl of a vector field.
 (M.U. Dec. 2017, 19) (3 m)

 [Refer § 3.4.5]
 (M.U. Dec. 2019) (5 m)


 [Refer § 3.5]
 (M.U. Dec. 2019) (5 m)

 Derive Maxwell's two general equations in integral and differential form.
 (M.U. Dec. 2017) (5 m)

 [Refer § 3.5.2 (c), 3.5.4 (A) ]
 (M.U. Nov. 2018) (5 m)

[Refer & Maxwell's equations in differential form and give their physical significance. [Refer § 3.5.5] [Refer § 3.5.5]

000



# ניאל פרא אלל הגאליים על אדו שלאכו כלבוא שלי

the first the second of the second states and

dilles state in marchine stratected

A Stall Teda

ATT I Hallow The Thester I have

# SYNOPSIS

- 4.1 Introduction
- 4.2 Einsten's Classical Theory of Relativity (Newtonian Theory of Relativity)
- 4.3 Einstein's Special Theory of Relativity
- 4.4 Time Dilation
- 4.5 Length Contraction
- 4.6 Einstein's Mass-Energy Relation
- 4.7 Important Points to Remembers
- 4.8 Problems
- 4.9 Review Questions

# Introduction

# What is relativity?

Consider a train moving with a speed of 60 km/hour. The train is observed by the observers.

TAY OST PATER

- (i) The first observer is standing at the station.
- (i) The first observer is moving in the direction of the train with a velocity of
- (iii) The third observer is moving with a velocity of 20 km/hour in the opposite

The observations of the three observers are different as follows :

- (i) The first observer would observe the velocity of the train as 60 km/hour.
- (ii) The second observer would observe the velocity of the train as (60 20)40 km/hour.
- (iii) The third observer would observe the velocity of the train as (60 + 20)80 km/hour.

The oldest theory of Physics is the Classical Physics or Newtonian Physics that deals with the absolute motion of an object considering space and time to be absolute and two separate entities. However, this concept failed to explain the motion with high velocities very close to the velocity of light.

The development of theory of relativity by Einstein in 1905 revolutionalized the old concepts. It discards the concept of absolute motion and deals with objects and observery moving with high velocities ( $\sim$  c) and relative velocities with respect to each other. This theory was developed in two steps and thus are divided into two parts.

- (i) Einstein's Classical Theory of Relativity based on Classical Physics, i.e. Newtonian mechanics.
- (ii) Einstein's Special Theory of Relativity applicable to all laws of Physics.

# Einsten's Classical Theory of Relativity (Newtonian Theory of Relativity)

Einstein initially developed his theory of relativity for classical physics, i.e. Newtonian Mechanics. This is called Einstein's classical theory of relativity.



(J)

(2)

Reigh

# ingineeric 1.2.1 : Frame of Reference

Frame of an object can be described only with the help of a coordinate system. The motion of the system in such cases is known as the frame of reference. There are two of frame of reference. There are two opes of frame of reference.

# Inertial frame of reference or unaccelerated frame

A frame of reference is said to be inertial when objects in this frame obey Newton's A frame of the laws of Newtonian mechanics. In this frame obey Newton's law of inertia and other laws of Newtonian mechanics. In this frame an object is not acted law of inercond force. It is at rest or moves with a constant velocity.

# Non inertial frame

A frame of reference which is in an accelerated motion with respected to an inertial A frame of reference is called a non-inertial frame of reference. In such frame an object even frame of references in such frame an object even without an external force acting on it, is accelerated. In non-inertial frame the Newton's laws are not valid.

Example : A ball placed the floor of a train moves to the rear if the train accelerates Example through no forces act on it. In this case, the train moves in an inertial frame of reference and the ball is in a non-inertial frame of reference.

# 4.2.2 : Galilean Transformations

The transformation from one inertial frame of reference to another is called Galilean transformation. Knowing the laws of motion of an object in a reference system S, the laws of motion of the same object in another reference system S' can be derived.

Let us consider a physical event. An event is something that happens without depending on the reference frame used to describe it. Suppose a collision of two particles occur at a point (x, y, z) at an instant of t secs. We describe this event by the coordinates (x, y, z, t) in one frame of reference, say, in a laboratory on the earth. The same event observed from a different reference frame, e.g., from an aircraft flying overhead would also be specified by a set of four coordinates in space and time (x', y', z', t') which is different from the earlier set of (x, y, z, t). Provide and the State of the second

Consider now two observers O and P, where P travels with a constant velocity 'v' with respect to O along their common X-X' axis. Here E is the event specified by coordinates (x, y, z, t) and (x', y', z', t') in frames S and S' respectively. 1.4618月1日的代表的时候

# Introduction

# What is relativity?

t is relativity? Consider a train moving with a speed of 60 km/hour. The train is observed by the

observers.

- (i) The first observer is standing at the station.
- (i) The first observer is moving in the direction of the train with a velocity (ii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity (iii) The second observer is moving in the direction of the train with a velocity 20 km/hour.
- 20 km/hour. (iii) The third observer is moving with a velocity of 20 km/hour in the opposite direction of the train.

The observations of the three observers are different as follows :

- (i) The first observer would observe the velocity of the train as 60 km/hour.
- (i) The first observer would observe the velocity of the train as (60 20)40 km/hour.
- (iii) The third observer would observe the velocity of the train as (60 + 20)80 km/hour.

The oldest theory of Physics is the Classical Physics or Newtonian Physics that deals with the absolute motion of an object considering space and time to be absolute and two separate entities. However, this concept failed to explain the motion with high velocities very close to the velocity of light.

The development of theory of relativity by Einstein in 1905 revolutionalized the old concepts. It discards the concept of absolute motion and deals with objects and observer moving with high velocities (~ c) and relative velocities with respect to each other. The theory was developed in two steps and thus are divided into two parts.

- (i) Einstein's Classical Theory of Relativity based on Classical Physics, ie, Newtonian mechanics.
- (ii) Einstein's Special Theory of Relativity applicable to all laws of Physics.

# Einsten's Classical Theory of Relativity (Newtonian Theory of Relativity

Einstein initially developed his theory of relativity for classical physics, i.e. Newtonian Mechanics. This is called Einstein's classical theory of relativity.

# Francering Physics - II 1.2.1 : Frame of Reference pres of frame of reference.

Inertial frame of reference or unaccelerated frame A frame of reference is said to be inertial when objects in this frame obey Newton's

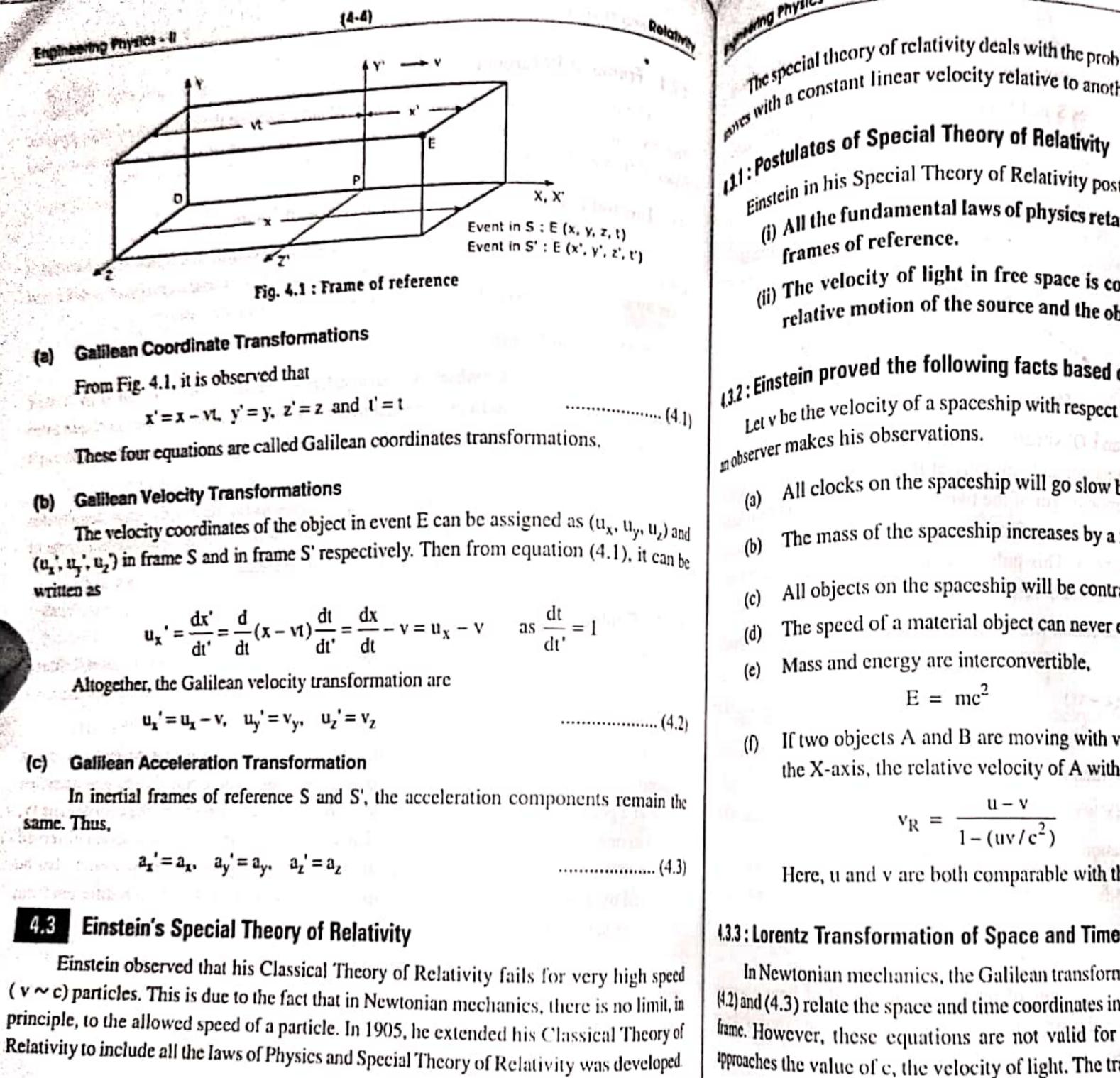
(1) A frame of the Newtonian mechanics. In this frame obey Newton's pwof inertia and other laws of Newtonian mechanics. In this frame an object is not acted law of incition in this frame an ob-

Non inertial frame

A frame of reference which is in an accelerated motion with respected to an inertial (2) A frame of reference is called a non-inertial frame of reference. In such frame an object even frame of references in such frame an object even without an external force acting on it, is accelerated. In non-inertial frame the Newton's laws are not valid.

Example : A ball placed the floor of a train moves to the rear if the train accelerates Example . If the train accelerates forward even though no forces act on it. In this case, the train moves in an inertial frame of reference and the ball is in a non-inertial frame of reference.

# 4.2.2 : Galilean Transformations


The transformation from one inertial frame of reference to another is called Galilean transformation. Knowing the laws of motion of an object in a reference system S, the laws of motion of the same object in another reference system S' can be derived.

Let us consider a physical event. An event is something that happens without depending on the reference frame used to describe it. Suppose a collision of two particles occur at a point (x, y, z) at an instant of t secs. We describe this event by the coordinates (x, y, z, t) in one frame of reference, say, in a laboratory on the earth. The same event observed from a different reference frame, e.g., from an aircraft flying overhead would also be specified by a set of four coordinates in space and time (x', y', z', t') which is different from the earlier set of (x, y, z, t). 11 62.7

Consider now two observers O and P, where P travels with a constant velocity 'v' with respect to O along their common X-X' axis. Here E is the event specified by coordinates (x, y, z, t) and (x', y', z', t') in frames S and S' respectively.

合为这一些 的复数

Frame of an object can be described only with the help of a coordinate system. Relativity The motion of a such cases is known as the frame of reference. There are two



The special theory of relativity deals with the problems in which one frame of reference The special Theory of Details in which one frame

Einstein in his Special Theory of Relativity postulated that (i) All the fundamental laws of physics retain the same form in all the inertial

The velocity of light in free space is constant and is independent of the The verocity of the source and the observer in any frame of reference.

# 13.2 : Einstein proved the following facts based on his theory of relativity

Let v be the velocity of a spaceship with respect to a given frame of reference where Maria O Jos O alectedad

All clocks on the spaceship will go slow by a factor  $\sqrt{1-(v^2/c^2)}$ 

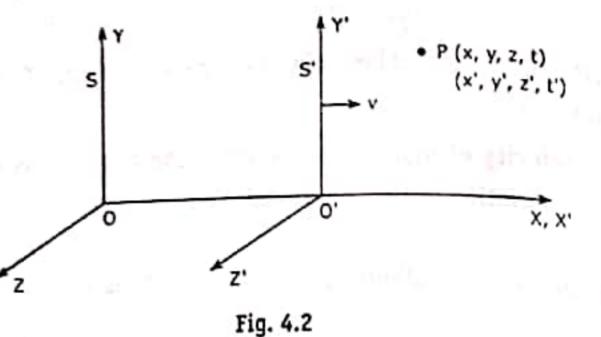
The mass of the spaceship increases by a factor  $\left[1-(v^2/c^2)\right]^{-1/2}$ .

All objects on the spaceship will be contracted by a factor  $\sqrt{1-(v^2/c^2)}$ . The speed of a material object can never exceed the velocity of light. Mass and energy are interconvertible, Girte de alta alta

$$E = mc^2$$

If two objects A and B are moving with velocities u and v respectively along the X-axis, the relative velocity of A with respect to B is given by

$$v_{\rm R} = \frac{u - v}{1 - (uv/c^2)}$$


Here, u and v are both comparable with the value of c.

### 4.3.3: Lorentz Transformation of Space and Time

In Newtonian mechanics, the Galilean transformations expressed in equations (4.1), (4.2) and (4.3) relate the space and time coordinates in one inertial frame to those the other frame. However, these equations are not valid for cases where the object velocity v approaches the value of c, the velocity of light. The transformation equations apply for all

velocities up to c and incorporate the invariance of the speed of light were developed, 1890 by Lorentz. These are known as Lorentz transformations.

by Lorentz. These are find frames S and S' as shown in the Fig. 4.2. The frames moves with a velocity v with respect to S in the positive X direction.



Consider two observers O and O' situated at the origin in the frames S and S respectively. Two coordinate systems coincide initially at the instant t = t' = 0. Suppose optical source is v kept at the common origin of the two frames. Let the source release, pulse at t = t' = 0 and at the same instant frame S' starts moving with a constant velocity along +X direction, relative to frame S. This pulse reaches a point P with coordinates (x, y, z, t) and (x', y', z', t') in frames S and S' respectively.

Since S' is moving along +X direction with respect to S, the transformation equation of x and x' can be written as

$$x' = k(x - vt)$$

where, k is the constant of proportionality.

...

Engineering Physics - II

The inverse relation can be written as,

$$\mathbf{x} = \mathbf{k} \left( \mathbf{x}' + \mathbf{v}\mathbf{t}' \right)$$

Putting equation (4.4) in equation (4.5), we can write

$$x = k [k (x - vt) + vt']$$

 $t' = kt - \frac{kx}{v} \left( 1 - \frac{1}{v^2} \right)$ 

Now, according to the second postulate of relativity, the speed of light c remains constant. So the velocity of the light pulse spreading out from the common origin obsend by observers O and O' should be the same

(4-6)

| x  | = | ct   |  |
|----|---|------|--|
| x' | = | ct ' |  |

Substituting equation (4.7) in equation (4.4) and equation (4.5), we have ct' = k(c - v)t

$$ct = k(c+v)t'$$
 (4.8)

--- (4.9)

(4.10)

Multiplying equations (4.8) with equation (4.9), we have

$$k^{2} = \frac{c^{2}}{c^{2} - v^{2}}$$

$$k = \pm \frac{1}{\sqrt{1 - (v^{2}/c^{2})}}$$

$$-\frac{1}{k^{2}} = \frac{v^{2}}{c^{2}}$$

Using equations (4.10) in equation (4.4), we have

$$x' = \frac{x - vt}{\sqrt{1 - (v^2/c^2)}}$$
(4.11)

Substituting equations (4.10) and (4.11), we have

$$t' = \frac{t - (xv/c^2)}{\sqrt{1 - (v^2/c^2)}}$$
(4.12)

Hence, if the frame S' moves with a velocity v in +X direction with respect to the frame S, the transformation equations are,

$$\frac{x - vt}{\sqrt{1 - (v^2/c^2)}}, \quad y' = y, \quad z' = z, \quad t' = \frac{t - (xv/c^2)}{\sqrt{1 - (v^2/c^2)}} \quad (4.13)$$

On the other hand, if the frame S moves with a velocity v in - X direction with respect to the frame S', we get the inverse transformation equations as

$$x = \frac{x' + vt'}{\sqrt{1 - (v^2/c^2)}}, \quad y = y', \quad z = z', \quad t = \frac{t' - (x'v/c^2)}{\sqrt{1 - (v^2/c^2)}} \quad \dots \quad (4.14)$$

If the speed of the moving frame is much smaller than the velocity of light, i.e., Iv « c, the Lorentz transformation equations reduce to Galilean transformation

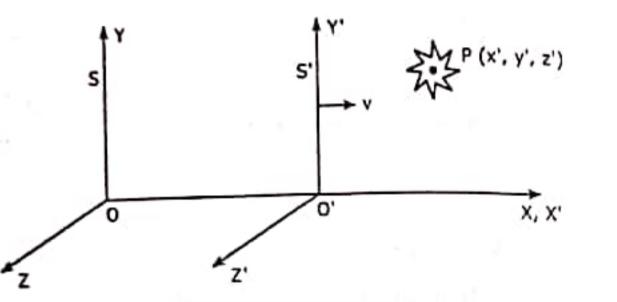
and

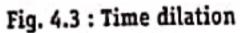
÷

...

and

x'= -----


equations.


# **Time Dilation**

Engineering Physics - II

The meaning of time dilation is extension of time. Time dilation is a difference in The meaning of time that the clocks due to a relative motion between them. To explain the clapsed time measured by two clocks due to a relative motion between them. To explain the clapsed time measured by the clapsed time it let us consider two mannes on the Fig. 4.3. Imagine a gun placed at a fixed position X direction with respect to S as shown in Fig. 4.3. Imagine a gun placed at a fixed position X direction with respect to 0 uppose it fires two shots at instants  $t_1'$  and  $t_2'$  measured by the P(x', y', z') in the frame S'. Suppose it fires two shots at instants  $t_1'$  and  $t_2'$  measured by the observer O' in the frame S'.

(4-8)

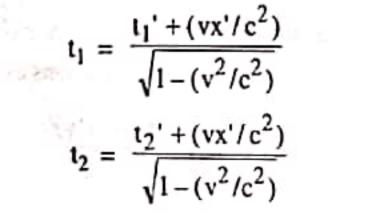




The time interval  $(t_2' - t_1')$  of the two shots measured by O' at rest in the moving frame S' is called the proper time interval and is given by

 $T_0 = t_2' - t_1'$ 

As the motion between the two frames is relative, we may assume that the frame S is moving with velocity - v along the - X direction relative to frame S'. In frame S, the observer O who is at rest hears these two shots at different times t1 and t2.


The time interval appears to him is given by

...... (4.18)

..... (4.19)

From inverse Lorentz transformation equations, we get

 $t = t_2 - t_1$ 



Substituting equations (4.17) and (4.18) in equation (4.16), we get

 $T = \frac{t_2' - t_1'}{\sqrt{1 - (v^2/c^2)}}$ 

ng Physics - II

Relativ

which shows that  $T > T_0$ . --- (4.20) shows that is called the proper time which is defined as the time measured in the Here, To is called the proper time object is at rest. Mane of reference in which the object is at rest. this verifies that the actual time interval in the moving frame appears to be lengthened 1 when it is measured by an observer in the fixed frame, v being the  $\sqrt{v^2 - c^2}$ relative velocity between the two frames.

Length Contraction In classical mechanics the length of an object is independent of the velocity of the herver moving relative to the object. However, in the theory of relativity, the length of the object depends on the relative velocity between the observer and the object.

To explain this, let us consider two inertial frames S and S' with S' moving with a velocity v in the X direction with respect to S. in hi shisiki kan ca

Let a rod AB be at rest the moving frame S'. Its actual length is Lo at any instant as measured by the observer O' also at rest in the frame S'. So,

(4.21)

where,  $x_1'$  and  $x_2'$  are the x coordinates of the rod in frame S' as shown in the Fig. 4.4. At the same time, the length of AB measured by an observer O in the stationary frame S is given by

Using equation (4.15) in equation (4.19), we have

$$T = \frac{T_{o}}{\sqrt{1 - (v^{2}/c^{2})}}$$

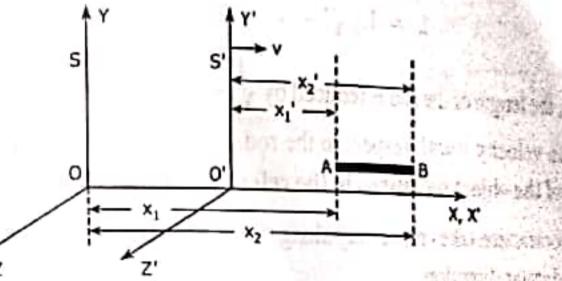



Fig. 4.4

$$L_0 = x_2' - x_1'$$

(4-10)

Engineering Physics - II

1. 2 to a strategy

...

25

 $L = x_2 - x_1$ 

 $x_1$  and  $x_2$  being the x coordinates of the rod in frame S. From Lorentz transformation,

$$x_{1}' = \frac{x_{1} - vt}{\sqrt{1 - (v^{2}/c^{2})}}$$
$$x_{2}' = \frac{x_{2} - vt}{\sqrt{1 - (v^{2}/c^{2})}}$$

Substituting equations (4.23) and (4.24) in equation (4.21), we get the actual length

$$L_{o} = \frac{x_{2} - x_{1}}{\sqrt{1 - (v^{2}/c^{2})}}$$

Using equation (4.22) in equation (4.25), we have

$$L_{0} = \frac{L}{\sqrt{1 - (v^{2}/c^{2})}}$$
$$L = L_{0}\sqrt{1 - (v^{2}/c^{2})}$$

Thus, the length of the rod is reduced by  $\sqrt{1 - (v^2/c^2)}$  when measured by an observer moving with velocity v with respect to the rod. Here, Lo is the proper length defined as

the length of the object measured in the reference frame in which the object is at rest.

The contraction takes place only along the direction of motion and remains unchanged in a perpendicular direction.

# **Einstein's Mass-Energy Relation**

In classical mechanics, the mass of a particle is independent of its velocity but in Einstein's special theory of relativity, the mass of a moving object depends upon its velocity and is given by

$$m = \frac{m_o}{\sqrt{1 - (v^2/c^2)}}$$

where, mo is the rest mass and v is the velocity of the moving body and c is the velocity of light.

ding Phy. whe work done on it.

Relativity

..... (4.23)

Newton's second law. Hence,

polication of the force F.

Again,

So,

2m ..

Showing that the change in kinetic energy is directly proportional to the change mass of the particle. 同时和原始上 (2

The increase in the energy of a particle by the applications of force may be estimated

work done on the application of a force F, the kinetic of a force F, the kinet c force F, the kinetic of a force F, the kinet c If a particular on the application dE generated and stored in it is given by the work done, dE = dW = F dx

$$dE = dW = F dx$$

Now, the force is defined as the time rate of change of momentum of the particle, by

$$F = \frac{d(mv)}{dt}$$

m is the mass of the particle and v is its velocity with which it moves on the

and the sure

de une compete plante presentation de la compete de la compete

(4.30)

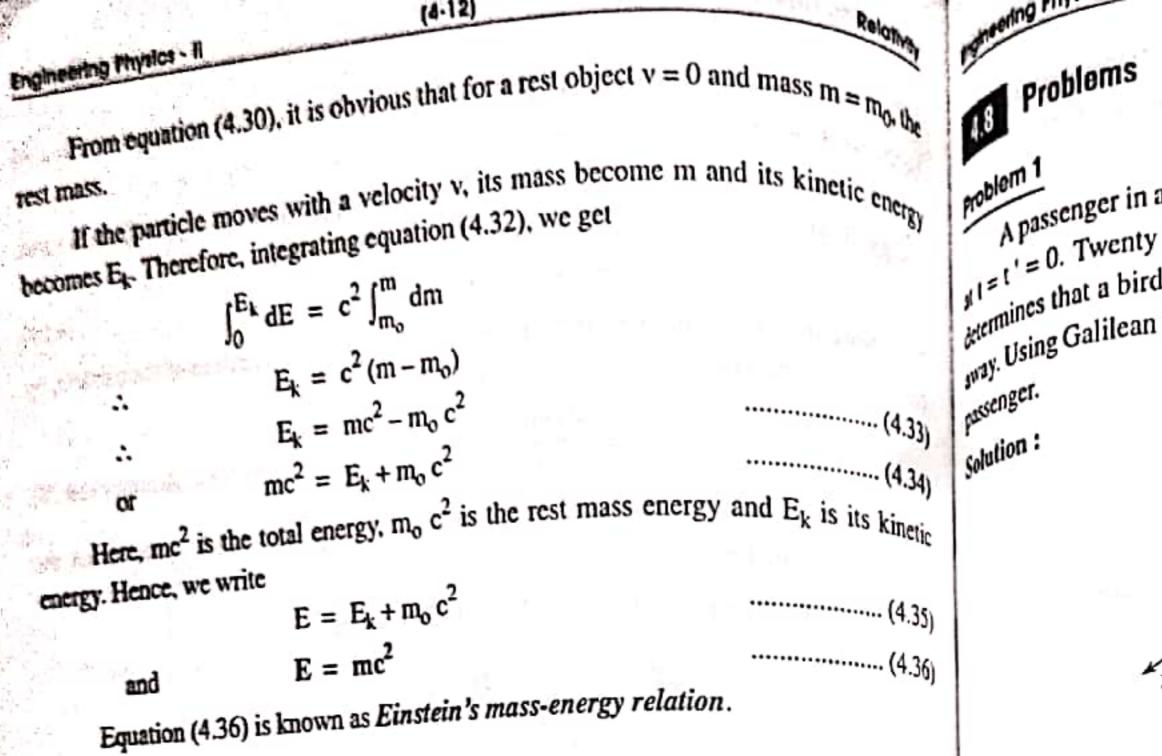
Thus, combining equations (4.27) and (4.28), we get

$$dE = \frac{d(mv)}{dt} \cdot dx$$

$$dE = \frac{dx}{dt} d(mv) = v [m dv + v dm]$$

$$dE = mv \, dv + v^2 \, dm$$

$$m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$$
$$m^2 = \frac{m_0^2}{1 - (v^2/c^2)}$$
$$m^2 c^2 - m^2 v^2 = m_0^2 c^2$$


Differentiating equation (4.30), with mo and c constants, we have

$$\dim c^2 - 2m \dim v^2 - 2v dv m^2 = 0$$

State of the second  $dm c^2 = v^2 dm + mv dv$ 

Substituting equation (4.31) in equation (4.29), we get

$$dE = dm c^2$$



# Important Points to Remembers

Space and Time transformation relations

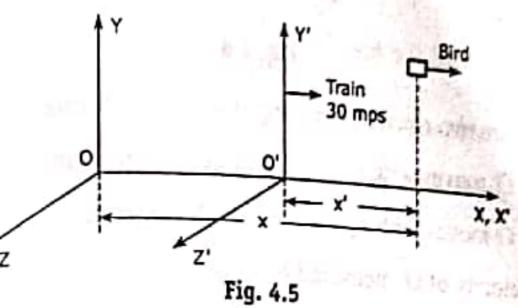
|                 | Galilean<br>transformation | Lorentz<br>transformation                        | Inverse Lorentz<br>transformation                 |
|-----------------|----------------------------|--------------------------------------------------|---------------------------------------------------|
| X - coordinates | x' = x - vt                | $x' = \frac{x - vt}{\sqrt{1 - (v^2/c^2)}}$       | $x = \frac{x' - vt}{\sqrt{1 - (v^2/c^2)}}$        |
| Y - coordinates | y '= y                     | y ' = y                                          | y = y '                                           |
| Z - coordinates | z'=z                       | z ' = z                                          | z = z '                                           |
| Time coordinate | t'=t                       | $t' = \frac{t - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}$ | $t = \frac{t' + (vx'/c^2)}{\sqrt{1 - (v^2/c^2)}}$ |

2. Time dilation : 
$$T = \frac{T_0}{\sqrt{1 - (v^2/c^2)}}$$
  
3. Length contraction :  $L = L_0 \sqrt{1 - (v^2/c^2)}$   
4. Einstein's mass energy relation :  $E = mc^2$  and  $E_k = mc^2 - m_0 c^2$ .

station. = 800 m

t = 20 sec.

Hence,


### Problem 2

A sample of radioactive material, at rest in the laboratory, ejects two electrons in opposite directions. One of the electrons has a speed of 0.6 c and the other has a speed of

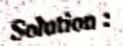
Relativity

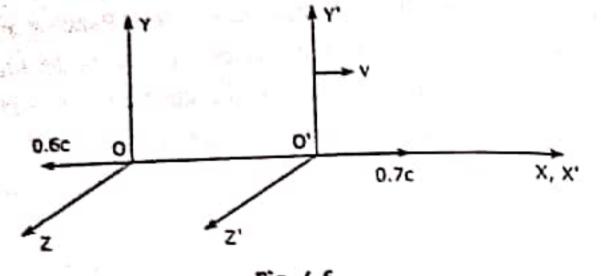
on this way

A passenger in a train moving at 30 mps passes a man standing on a station platform A passenger A passenger A passenger A passes the station on a station platform t'=0. Twenty second after the train passes the station, the man on the platform t'=0 that a bird flying along the tracks in the same directions as the station  $t^{1} = 0$ . It is a bird flying along the tracks in the same directions as the platform  $t^{1} = 0$  and  $t^{2} = 0$ . It is a bird flying along the tracks in the same directions as the platform  $t^{2} = 0$ . The train is 800 m is 800 m. etermines that a grant of the coordinates of the bird as determined by the



By Galilean transformation x' = x - vt.


where, x = position of the bird on X-axis as seen by the stationary observer O on the


x' = position of the bird on X-axis as seen by the passenger O' in the train v = 30 mps = velocity of the train

 $x' = 800 - (30 \times 20) = 200 \text{ m}$ For the stationary observer the coordinates of the bird is (x, y, z, t) = (800 m, 0, 0, 20 s)For the passenger the coordinates of the bird is (x', y', z', t) = (200 m, 0, 0, 20 s)

(4-14)

0.7c as measured by a laboratory observer. According to Galilean transformation, what 0.7c as measured by a factor on as measured from the other? Comment on your result will be the speed of one electron as measured from the other?







Let O and O' are two electrons moving in -X and +X directions.

The electron O' moves with v = 0.7c with respect to O in X direction.

The electron O moves with  $u_x = -0.6c$  in -X direction.

Hence, the velocity of O' measured by O is

 $u_x' = u_x - v = -0.6c - 0.7c = -1.3c$ 

The result shows a velocity greater than c by Galilean transformation. This is inconsistent with the special theory of relativity.

### Problem 3

A train moving with a velocity of 60 kmph passes through a rail station at 12.00 clock. Twenty seconds later a bolt of lightening strikes the rail track one km away from the station in the direction of the train. Using Galilean transformation, find the coordinates of the lightening flash as measured by an observer at the station and by the engineer of the train.

Solution :

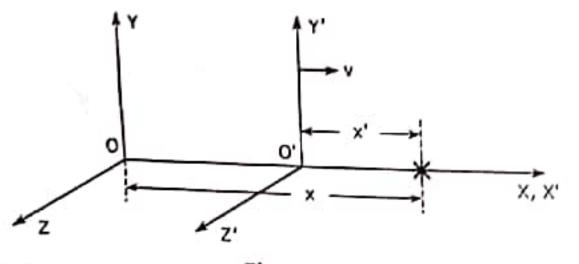



Fig. 4.7

The flash strikes the rail tract at

and mix.

Relative

with respect to O.

Hence, the coordinates of the flash measured by the observer at the station is Hence,  $\frac{1}{180}$  hr and by the engineering the train are  $\left(0.666 \text{ km}, 0, 0, \frac{1}{180} \text{ hr}\right)$ .

### problem 4

Solution :

P is the event with coordinates (x, y, z, t) in the stationary frame S and (x', y', z', t) in teframe S' moving with  $v = 2.7 \times 10^8$  m/sec. with respect to S.

According to Galilean transformation χ'

$$t = t' = \frac{20}{3600} = \frac{1}{180} \, hr$$

0 is the observer at the station and O' is the engineer in the train moving at  $H^{ere}$ , with respect to O.

Relativity

at the state of the

The observer at the station measures the x-coordinate of the flash as x = 1 km. The engineer in the train measures the x-coordinates of the flash as The engineer in the train measures the x-coordinates of the flash as

$$x' = x - vt$$

$$x' = 1 - \left(60 \times \frac{1}{180}\right) = \frac{2}{3} \text{ km} = 0.666 \text{ km}$$

An event occurs at x = 100 m, y = 10 m, z = 5 m and  $t = 1 \times 10^{-4}$  sec in a frame S. An event in a frame S' which is moving with a velocity  $2.7 \times 10^8$ "see with respect to the frame S along the common XX' axes using (i) Galilean ransformation and (ii) Lorentz transformation. THE BUILD IN THE DIST.

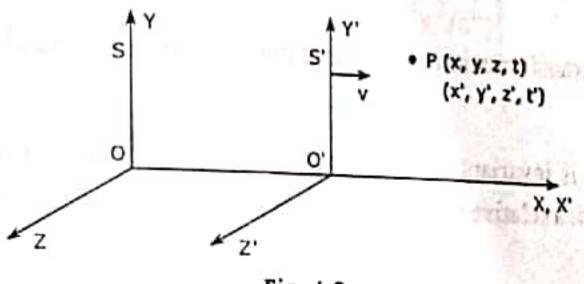



Fig. 4.8

x = 100 m, y = 10 m, z = 5 m,  $t = 10^{-4} \text{ sec}$ .

$$x' = x - vt$$
,  $y' = y$ ,  $z' = z$ ,  $t' = t$   
 $x' = 100 - (2.7 \times 10^8) 10^{-4} = -26900 \text{ m}$ 

Engineering Physics - II

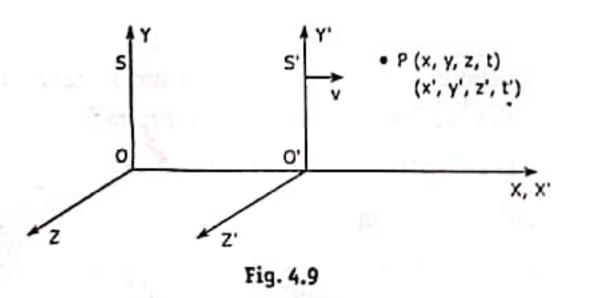
(ii)

n, 
$$t = 10^{-4}$$
 sec

y' = 10 m, z' = 5 mSo the coordinates of the event are (- 26900 m, 10 m, 5 m, 10<sup>-4</sup> sec.)

According to Lorentz transformation

$$x' = \frac{x - vt}{\sqrt{1 - (v^2/c^2)}}, \quad y' = y, \quad z' = z, \quad t' = \frac{t - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}$$
  
Here,  $\sqrt{1 - (v^2/c^2)} = \sqrt{1 - \left(\frac{2.7 \times 10^8}{3 \times 10^8}\right)^2} = \sqrt{1 - (0.9)^2} = 0.43588$   
 $x' = \frac{100 - (2.7 \times 10^8)(10^{-4})}{0.43588} = 6.712 \text{ m}$   
 $y' = 10 \text{ m}$   
 $z' = 5 \text{ m}$   
 $t' = \frac{t - (vx/c^2)}{0.43588} = \frac{10^{-4} - (2.7 \times 10^8)(100)/(3 \times 10^8)^2}{0.43588}$   
 $t' = 2.2735 \times 10^{-4} \text{ sec}$ 


Hence, the coordinates of the event in frame S' are

(61712 m, 10 m, 5 m,  $2.2735 \times 10^{-4}$  S).

### Problem 5

Use Lorentz transformation to show that the quantity  $(x^2 + y^2 + z^2 - c^2 t^2)$  is invariant. Solution :

If a quantity is invariant it remains the same in all frames of reference. Consider frames S and S' with a relative velocity v. P is an event with coordinates (x, y, z, t) in S and (x', y', z', t') in S'.

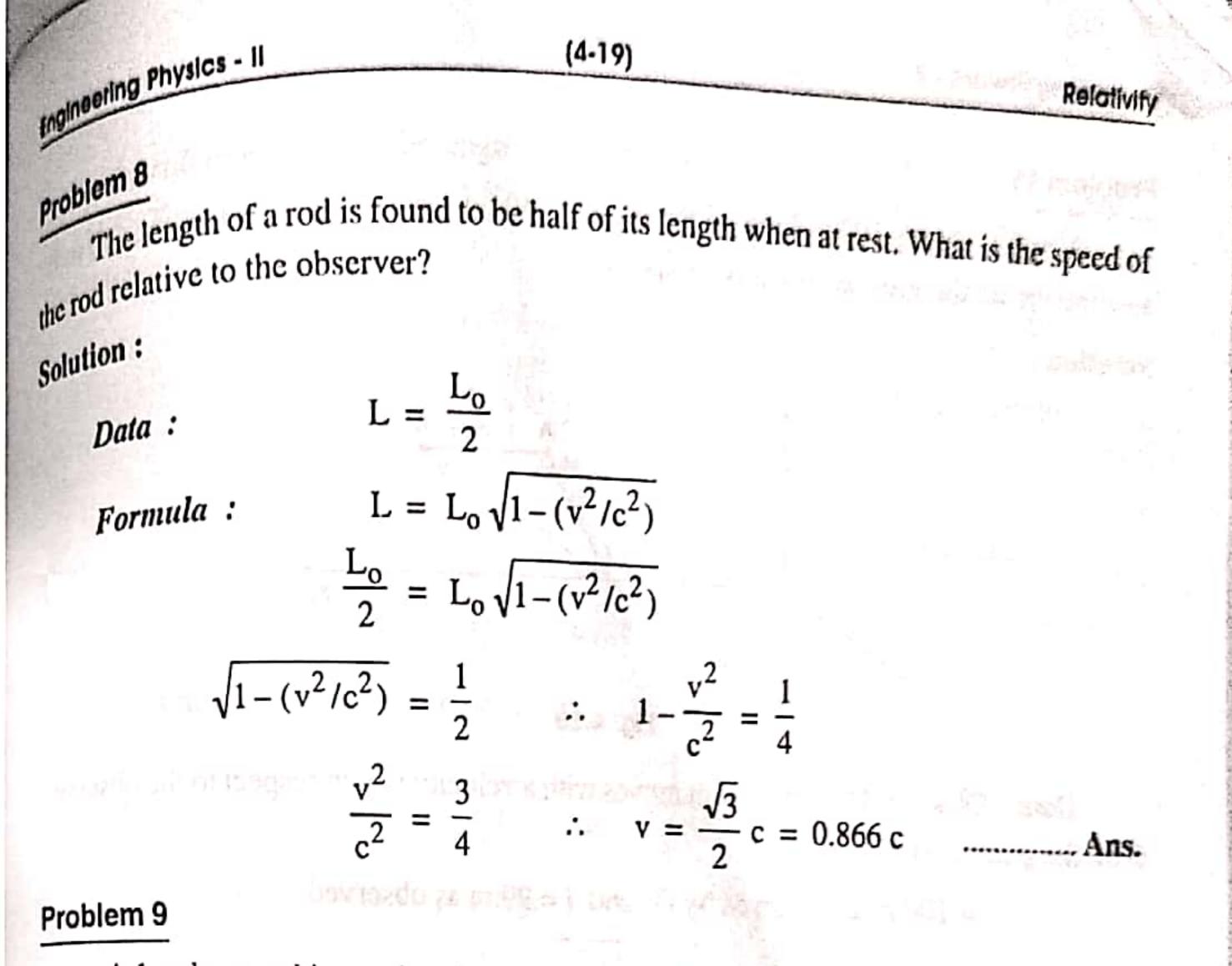


Hence, proved.

Problem 6

ing physic.

Relativity


According to Lorentz transformation, we have  

$$x' = \frac{x - vt}{\sqrt{1 - (v^2/c^2)}}, \quad y' = y, \quad z' = z, \quad t' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad y' = y, \quad z' = z, \quad t' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad y' = y, \quad z' = z, \quad t' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad y' = y, \quad z' = z, \quad t' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad y' = y, \quad z' = z, \quad t' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad z' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad y' = y, \quad z' = z, \quad z' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad z' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad z' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad y' = y, \quad z' = z, \quad z' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad y' = z, \quad z' = \frac{1 - (vx/c^2)}{\sqrt{1 - (v^2/c^2)}}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2(t^2 - 2\frac{vxt}{c^2} + \frac{v^2x^2}{c^4})}{1 - (v^2/c^2)}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2(t^2 - 2\frac{vxt}{c^2} + \frac{v^2x^2}{c^4})}{1 - (v^2/c^2)}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2(t^2 - 2\frac{vxt}{c^2} + \frac{v^2x^2}{c^4})}{1 - (v^2/c^2)}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2(t^2 - 2\frac{vxt}{c^2} + \frac{v^2x^2}{c^4})}{1 - (v^2/c^2)}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2(t^2 - 2\frac{vxt}{c^2} + \frac{v^2x^2}{c^4})}{1 - (v^2/c^2)}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2(t^2 - 2\frac{vxt}{c^2} + \frac{v^2x^2}{c^4})}{1 - (v^2/c^2)}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2t^2}{1 - (v^2/c^2)}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2t^2}{1 - (v^2/c^2)}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2t^2}{1 - (v^2/c^2)}, \quad y' = z, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{x^2 - 2x vt + v^2t^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{x^2 + y^2 + z^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{x^2 + y^2 + z^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{x^2 + y^2 + z^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{x^2 + y^2 + z^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{x^2 + y^2 + z^2 - c^2t^2}{1 - (v^2/c^2)}, \quad z' = \frac{$$

Relativit

Using Lorentz transformation, show that the circle  $x^2 + y^2 = a^2$  in frame S appears to be an ellipse in frame S ' moving with a velocity v with respect to S.

WARRANT PARTY

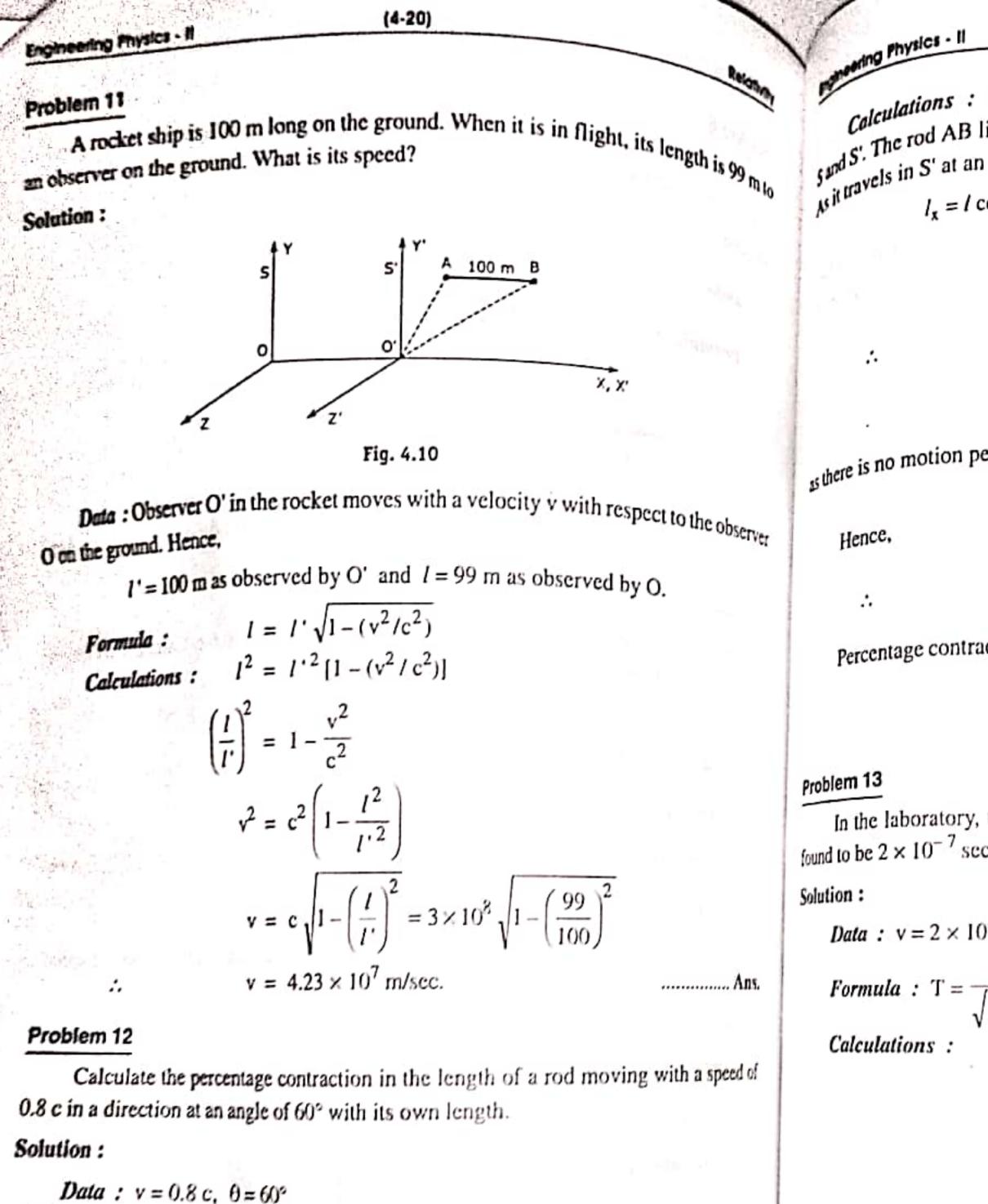


A 1 m long rod is moving along its length with a velocity 0.6 c. Calculate its length as it appears to an observer on the earth.

# Solution :

Data : 
$$v = 0.6 c$$
,  $L_0 = 1 m$ .  
Formula :  $L = L_0 \sqrt{1 - (v^2/c^2)}$   
Calculations :  $L = 1 \sqrt{1 - (0.6)^2} = 0.8 m$  .......Ans.

# Problem 10


A rod has a length of 2 m. Find its length when it is carried in a rocket with a speed of 0.9 e.

# Solution :

| Data : $L_0 = 2 m$ , | v = 0.9 c          | Lend ministration | WILLS INFAMPLY  | and<br>Alight  |
|----------------------|--------------------|-------------------|-----------------|----------------|
| Formula :            | $L = L_0 \sqrt{1}$ |                   |                 | a in majerente |
| Calculations :       | $L = 2\sqrt{1-1}$  | $(0.9)^2$         |                 |                |
| •••                  | L = 0.872          |                   | the cost of     | N 2011 1 1 2 1 |
|                      |                    | A starter and     | - 1 - 1 - 1 - 1 | . Charles      |

... Ans.





 $l = l_0 \sqrt{1 - (v^2/c^2)}$ 

Formula :

Calculations : 0 is the angle between frames Colour of AB lies in the XY plane in frames Sand S. the second state of 60° with frame S.  $h = 1 \cos 60^\circ$  $l_x = l \cos 60^\circ$ 

$$l_{x}' = l_{x} \sqrt{1 - (v^{2}/c^{2})}$$
$$= l \cos 60^{\circ} \sqrt{1 - (08)^{2}}$$
$$l_{x}' = 0.3 l$$

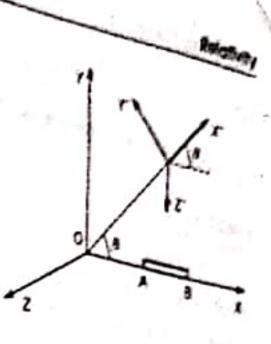



Fig. 4.11

 $l_{y}' = l_{y} = 1 \sin 60^{\circ} = \frac{\sqrt{3}1}{2}$ 

sthere is no motion perpendicular to the length of the rod.

$$l' = \sqrt{l_x \cdot l_y \cdot l_y}^2 = \sqrt{(0.3l)^2 + (\frac{\sqrt{3}l}{2})^2}$$

$$l' = 0.9165l$$

$$\text{action} = \frac{l-l'}{l} \times 100$$

$$= \frac{l-0.9165l}{l} \times 100 = 8.2\%$$

In the laboratory, the lifetime of a particle moving with speed  $2.8 \times 10^8$  m/sec is found to be  $2 \times 10^{-7}$  sec. Calculate the proper life time of the particle.

$$\times 10^{-7} \text{ sec, } T = 2.8 \times 10^8 \text{ m/sec.}$$

$$= \frac{T_0}{\sqrt{1 - (v^2/c^2)}}; \quad T = \text{Life time measured, } T_0 = \text{Proper lifetime.}$$

$$: \quad T_0 = T \sqrt{1 - (v^2/c^2)}$$

$$= 2 \times 10^{-7} \sqrt{1 - \left(\frac{2.8 \times 10^8}{3 \times 10^8}\right)}$$

### Engineering Physics - II

 $T_0 = 7.18 \times 10^{-7}$  sec.

Ans. : Proper life time =  $7.18 \times 10^{-7}$  sec.

### Problem 14

A certain process requires 10<sup>-6</sup> sec. to occur in an atom at rest in laboratory. How much time will this process require to an observer in the laboratory, when the atom is moving with a speed of  $5 \times 10^7$  m/sec?

Solution :

Data : 
$$T_0 = 10^{-6} \text{ sec.}, v = 5 \times 10^7 \text{ m/sec.}$$
  
Formula :  $T = \frac{T_0}{\sqrt{1 - (v^2/c^2)}}$   
Calculations :  $T = \frac{10^{-6}}{\sqrt{1 - (v^2/c^2)}} = 1.014 \times 10^{-6} \text{ sec.}$   
 $\sqrt{1 - (\frac{5 \times 10^7}{3 \times 10^8})^2}$ 

### Problem 15

The mean life of a meson is  $2 \times 10^{-8}$  sec. Calculate the mean life of a meson moving with a velocity of 0.8 c.

### Solution :

Data :  $T_o = 2 \times 10^{-8}$  sec., v = 0.8 c.

Formula :

$$T = \frac{I_0}{\sqrt{1 - (v^2/c^2)}}$$

Calculations :

...

$$T = \frac{2 \times 10^{-8}}{\sqrt{1 - \left(\frac{0.8 \text{ c}}{\text{ c}}\right)^2}} = \frac{2 \times 10^{-8}}{\sqrt{1 - (0.8)^2}}$$
$$T = 3.33 \times 10^{-8} \text{ sec.}$$

Ans. : Mean life of a meson =  $3.33 \times 10^{-8}$  sec.

plem 16 infution : Dala : To Formula Calculations :

Relativity

Problem 17 Solution : Data :

Formula

Calculatio

What is the velocity of  $\pi$  mesons whose observed mean life is  $2.5 \times 10^{-7}$  sec. The What is a life of these  $\pi$  mesons is  $2.5 \times 10^{-8}$  sec.

$$= 2.5 \times 10^{-8} \text{ sec., } T = 2.5 \times 10^{-7} \text{ sec.}$$
$$T = \frac{T_0}{\sqrt{1 - (v^2/c^2)}}$$

$$\overline{1 - (v^2/c^2)} = \frac{T_0}{T}$$

$$v^2 = c^2 \left[ 1 - \left(\frac{T_0}{T}\right)^2 \right]$$

$$v^2 = c^2 \left[ 1 - \left(\frac{2.5 \times 10^{-8}}{2.5 \times 10^{-7}}\right)^2 \right]$$

$$v = 0.995 c$$

77% Cal 430

Ans.

Relative

A clock keeps correct time on the earth. It is put on the space ship moving uniformly with a speed of 108 m/sec. How many hours does it appear to lose per day?

- T = 24 hrs as measured in the space ship
- $T_0$  = the time observed by an observe on the earth.  $v = 10^8$  m/sec.

$$: T = \frac{T_0}{\sqrt{1 - (v^2/c^2)}}$$
  
ons : T\_0 = T  $\sqrt{1 - \frac{v^2}{c^2}} = 24 \sqrt{1 - \left(\frac{10^{-8}}{3 \times 10^{-8}}\right)^2}$ 

$$T_o = 24 \times \frac{2\sqrt{2}}{3} = 22.63$$
 sec.

Time lost per day = 24 - 22.63 = 1.37 hr

# Problem 18

With what velocity should a rocket move, so that every year spent on it corresponds to 4 years on the earth? Solution :

(4-24)

Data :

 $T_o = correct time = 1$  year on the rocket

T = 4 years, as appears from the earth

Formula :

 $T = \frac{T_0}{\sqrt{1 - (v^2/c^2)}}$ 

Calculations :

$$-\frac{v^2}{c^2} = \frac{T_0}{T}$$
$$v^2 = c^2 \left[ 1 - \left(\frac{T_0}{T}\right)^2 \right] = c^2 \left[ 1 - \left(\frac{1}{4}\right)^2 \right]$$
$$v = 0.97 c$$

### Problem 19

...

With what velocity should a space ship fly so that every day spent on it may correspond to three days on the earth's surface.

Solution :

T = 3 days as it appears on the earth's surface. Data :

 $T_0 = 1$  day as measured in the spaceship.

Formula : 
$$T = \frac{T_0}{\sqrt{1 - (v^2/c^2)}}$$

Calculations :

*.*..

:.

$$1 - \frac{v^2}{c^2} = \left(\frac{T_0}{T}\right)^2$$
$$v^2 = c^2 \left[1 - \left(\frac{T_0}{T}\right)^2\right] = c^2 \left[1 - \frac{1}{9}\right]$$
$$v = \frac{2\sqrt{2}}{3}c = 0.47c$$

..... Ans.

CREATE CONTRACT

..... Ans.

91-16

problem 21 Solution :

...

Problem 22

With what velocity a particle should move so that its mass appears to increase by 20 % of its rest mass?

Physics - II

(4-25)

# molem 20

At what speed should a clock be moved so that it may appear to lose 1 minute in

st hour?

# wittion :

Jon : Data: The clock, loses 1 min in each hour. So it must record 59 min. for each hour. 50 min., T = 1 hour = 60 min.  $T_0 = 59 \text{ min.}, T = 1 \text{ hour} = 60 \text{ min.}$ 

# Formulae : $T = \frac{T_0}{\sqrt{1 - (v^2/c^2)}}$

 $\sqrt{1 - \frac{v^2}{c^2}} = \frac{T_o}{T}$ 

...

 $\mathbf{v}^2 = \mathbf{c}^2 \left[ 1 - \left(\frac{\mathbf{T}_0}{\mathbf{T}}\right)^2 \right] = \mathbf{c}^2 \left[ 1 - \left(\frac{59}{60}\right)^2 \right]$ v = 0.1818 c

At what velocity will the mass of a body is 2.25 times its rest mass?

Data :  $m = 2.25 m_0$ 

Formula :

 $m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$ 

Calculations :

 $1 - \frac{v^2}{c^2} = \left(\frac{m_0}{m}\right)^2$  $v^{2} = c^{2} \left[ 1 - \left( \frac{m_{0}}{m} \right)^{2} \right] = c^{2} \left[ 1 - \left( \frac{1}{2.25} \right)^{2} \right]$ v = 0.895 c

## Engineering Physics - II

(4-26)

 $\mathbf{v}^2 = \mathbf{c}^2 \left[ 1 - \left(\frac{\mathbf{m}_0}{\mathbf{m}}\right)^2 \right] = \mathbf{c}^2 \left[ 1 - \left(\frac{1}{1.2}\right)^2 \right]$ 

## Solution :

Data :  $m = m_0 + 20 \% m_0 = 1.2 m_0$ 

Formula :  $m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$ m Calculatio  $\sqrt{1 - (v^2/c^2)}$ 

 $1 - \frac{v^2}{c^2} = \left(\frac{m_0}{m}\right)^2$ 

 $v^2 = c^2 [0.30558]$ 

v = 0.553 c

alculations : 
$$\frac{m_0}{m_0} = -\frac{m_0}{v}$$

Problem 23

If the kinetic energy of a body is double its rest mass energy calculate its velocity. Solution :

Data : 
$$E_k = 2 m_0 c^2$$
  
Formulae :  $E = E_k + m_0 c^2$ ,  $E = mc^2$ ,  $m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$   
Calculations :  $mc^2 = 2 m_0 c^2 + m_0 c^2$   
 $m = 3 m_0$   
 $\therefore \frac{m_0}{\sqrt{1 - (v^2/c^2)}} = 3 m_0$   
 $1 - \frac{v^2}{c^2} = \frac{1}{9}$   $\therefore v^2 = c^2 \frac{8}{9}$   
 $\therefore v = \frac{2\sqrt{2}}{3} c = 0.94 c$  ......Ats

Now,

..... Ans

÷

÷

Problem 25 Solution : Data

The mass of a moving electron is 11 times its rest mass. Calculate its kinetic energy plem 24

Solution :

Physics - II

How fast must an electron move in order to have its mass equal to the rest mass of the proton  $(1.67 \times 10^{-27} \text{ kg})$ ?

: 
$$m = m_p = rest mass of a proton = 1.67 \times 10^{-47} kg$$
  
 $m_0 = 9.1 \times 10^{-31} kg$ 

Formula :  $m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$  Calculations :

$$1 - \frac{v^2}{c^2} = \left(\frac{m_0}{m}\right)^2$$

$$v^2 = c^2 \left[1 - \left(\frac{m_0}{m}\right)^2\right] = c^2 \left[1 - \left(\frac{9.1 \times 10^{-31}}{1.67 \times 10^{-27}}\right)^2\right]$$

$$\therefore \qquad v = 0.9985 c$$

### Problem 26

Kinetic energy of a particle is (i) 3 times, (ii) equal to its rest mass energy. What is velocity?

### Solution :

...

Data : (i) 
$$E_k = 3 m_0 c^2$$
, (ii)  $E_k = m_0 c^2$ .  
Formulae :  $E = E_k + m_0 c^2$ ,  $E_k = mc^2 - m_0 c^2$ ,  $m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$   
Calculations : (i)  $E_k = mc^2 - m_0 c^2$   
 $3 m_0 c^2 = mc^2 - m_0 c^2$   
 $m = 4 m_0$ 

 $\frac{m_0}{\sqrt{1 - (v^2/c^2)}} = 4 m_0 \qquad \therefore \qquad 1 - \frac{v^2}{c^2} = \frac{1}{16}$  $v^2 = c^2 \left(1 - \frac{1}{16}\right) \qquad \therefore \qquad v = 0.968 c$  $E_k = mc^2 - m_0 c^2$ (ii)  $m_0 c^2 = mc^2 - m_0 c^2$  $mc^2 = 2 m_o c^2$ 传动游戏 居  $m = 2 m_0$ 

÷

$$\frac{m_o}{\sqrt{1 - (v^2/c^2)}} = 2 m_o$$

Als

$$1 - \frac{v^2}{c^2} = \frac{1}{4}$$
$$v^2 = c^2 \left(1 - \frac{1}{4}\right)$$

v = 0.866 c

Engineering Physics - II

Problem 27 mechanics. Solution : Data : E

Find the velocity of a 0.1 MeV electron according to classical and relativistic

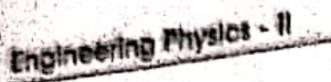
$$E_k = 0.1 \text{ MeV} = 0.1 \times 10^6 \times 1.6 \times 10^{-19} = 1.6 \times 10^{-14} \text{ Joules}$$
  
 $m = 9.1 \times 10^{-31} \text{ kg} \text{ (classically),}$   
 $m_o = 9.1 \times 10^{-31} \text{ kg} \text{ (relativistically)}$ 

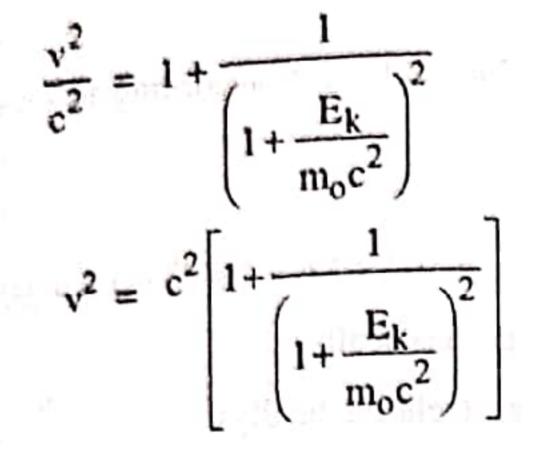
Formulae :  $E_k = \frac{1}{2} mv^2$  in classical mechanics and  $E_k = mc^2 - m_0 c^2$  in relativistic mechanics.

$$m = \frac{m_0}{\sqrt{1 - (v^2/c^2)}}$$

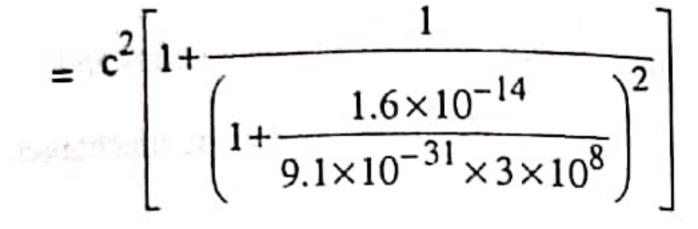
Calculations : In classical mechanics,

$$v = \sqrt{\frac{2}{m}} E_k = \sqrt{\frac{2}{9.1 \times 10^{-31}} \times 1.6 \times 10^{-14}}$$


129


 $v = 1.87 \times 10^{\circ} \text{ m/sec}$ 

In relativistic mechanics,


$$\begin{split} E_{k} &= \frac{m_{0} c^{2}}{\sqrt{1 - (v^{2}/c^{2})}} - m_{0} c^{2} \\ E_{k} &= m_{0} c^{2} \left( \frac{1}{\sqrt{1 - (v^{2}/c^{2})}} - 1 \right) \\ \frac{E_{k}}{m_{0} c^{2}} &= \frac{1}{\sqrt{1 - (v^{2}/c^{2})}} - 1 \\ \frac{1}{\sqrt{1 - (v^{2}/c^{2})}} &= \frac{E_{k}}{m_{0} c^{2}} + 1 \end{split}$$

$$\sqrt{1 - \frac{v^2}{c^2}} = \frac{1}{1 + \left(\frac{E_k}{m_0 c^2}\right)} \qquad \therefore \quad 1 - \frac{v^2}{c^2} = \frac{1}{\left(1 + \frac{E_k}{m_0 c^2}\right)^2} \qquad \therefore \quad 1 - \frac{v^2}{c^2} = \frac{1}{\left(1 + \frac{E_k}{m_0 c^2}\right)^2} \qquad \therefore \quad 1 - \frac{v^2}{c^2} = \frac{1}{\left(1 + \frac{E_k}{m_0 c^2}\right)^2} \qquad \therefore \quad 1 - \frac{v^2}{c^2} = \frac{1}{\left(1 + \frac{E_k}{m_0 c^2}\right)^2} =$$





(4-30)



v = 0.54 c

# **Review Questions**

- Short answer type : (A)
  - Distinguish between the Special Theory of Relativity and the Classical Theory 1.
    - of Relativity.

..... Ans.

- Define an inertial frame of reference. 2.
- What are non-inertial frames of reference? 3.
- What are Galilean transformation? 4.
- 5. Write Lorentz transformation equation.
- 6, Write inverse Lorentz transformation equations.
- What are the postulates of Special theory of relativity? 7.
- Explain time dilation and length contraction. 8.
- Show how does the mass of an object vary with velocity. 9.
- What are (i) proper length and (ii) proper time? 10.
- **(B)** Long answer type :
  - 1. Derive Galilean transformation equations for (i) position, (b) velocity, and (c) acceleration.

NoDULE 5

(**Prerequisites :** Scattering of electrons, Tunneling effect, Electrostatic focusing, Magneto static focusing.)

Nanomaterials : Properties (Optical, electrical, magnetic, structural, mechanical) and applications, Surface to volume ratio, Two main approaches in nanotechnology - Bottom up technique and Top down technique.

Tools for characterization of Nanoparticles : Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM). Methods to synthesize Nanomaterials : Ball milling, Sputtering, Vapour deposition, Solgel. (04 Hours) (Weightage - 10%)

**Course Outcome : CO5 :** Learner will be able to illustrate the knowledge of synthesis, characterisation and applications of nanomaterials.

is the first of the second method of the second terms of the first of the second state of the second s

Station Solution and the ments

# SYNOPSIS

5.1 Introduction

in a term

- 5.2 Prerequisite
- 5.3 Nanomaterials
- 5.4 Tools for Characterization of Nanoparticles
- 5.5 Methods to Synthesize
- 5.6 Applications of Nanomaterials Important Points to Remember

Exercise

Previous University Examination Questions with Solutions

# 5.1 Introduction

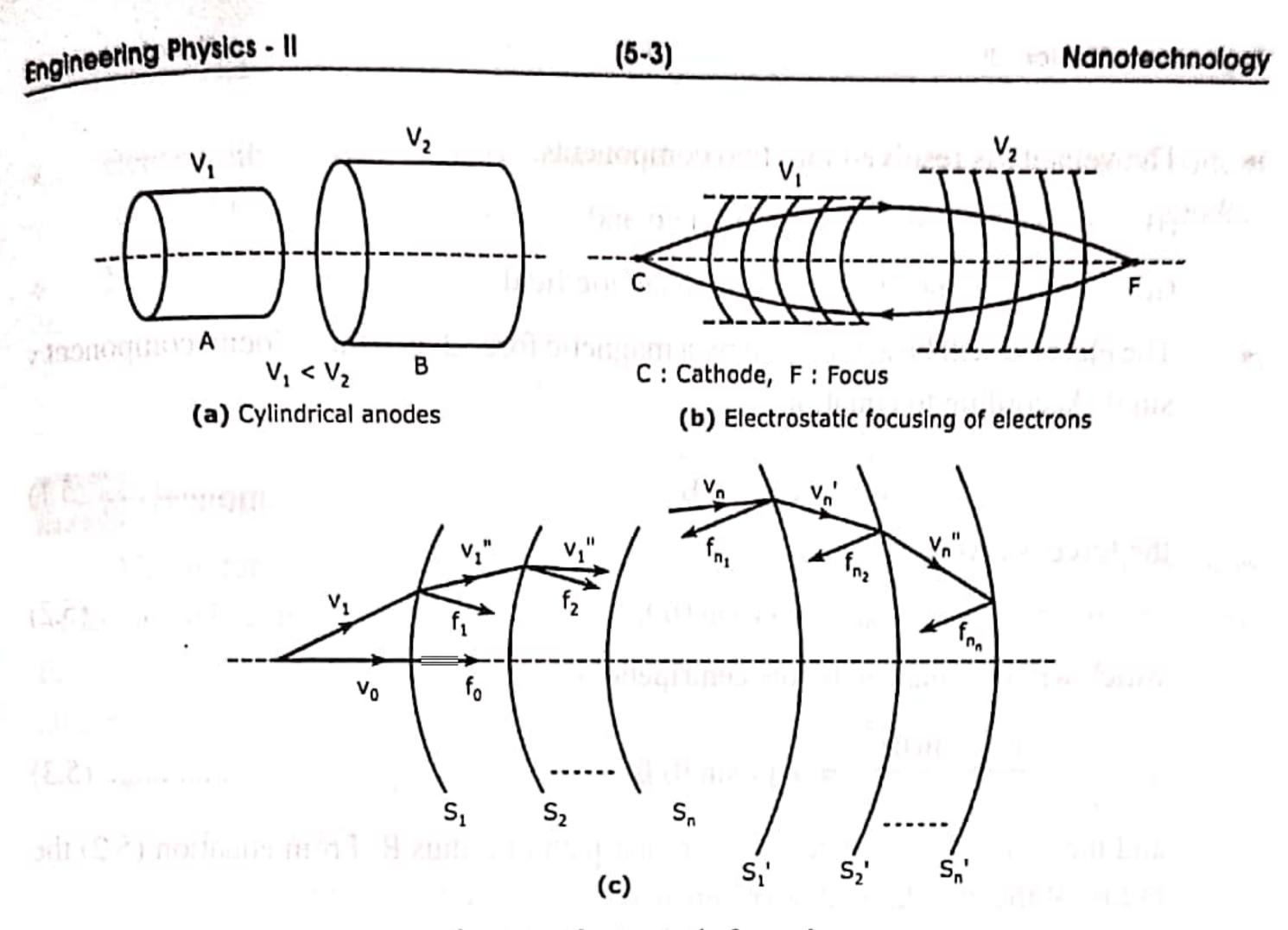
Nanotechnology is the term given to those areas of science and engineering where phenomena that take place at dimensions in the nanometer scale are utilised in the design characterisation, production and application of materials, structure, devices and systems. Nanotechnology is the manipulation of matter on an atomic, molecular and supermolecular scale and deals with various structures of matter having dimensions of the order of 100 nm.

(5-2)

Nanotechnolog

# 5.2 Prerequisite

as ment is a detto on


# 5.2.1 : Electrostatic Focussing

An electric field can be represented by a series of very closed spaced imaginary surfaces on which at every point the electric potential is constant. Such surfaces are called equipotential surfaces. The electric field is always directed perpendicularly to the equipotential surface at every point on it.

 An electron lens consists of two coaxial metallic cylinders A and B separated by some distance. The cylinders A and B are maintained at different positive potentials

 $V_1$  and  $V_2$  respectively such that  $V_2 > V_1$ . These positively charged cylinders are called *cylindrical anodes* as shown in Fig. 5.1 (a).

- In Fig. 5.1 (b), the equipotential surfaces of the two cylinders are shown. The electron beam undergoes bending at each equipotential surface and finally it is focussed at the point F. The gradual bending of the electron beam is illustrated in Fig. 5.1 (c).
- Consider the electron travelling with velocity  $v_0$  along the axis of the system. The electric force  $f_0$  acting perpendicular to the equipotential surfaces drags the electron along the axis to the point P.
- A more deflected electron travelling with a velocity  $v_1$  is bent by the perpendicular electric forces  $f_1$  at the first equipotential surface  $S_1$ ,  $f_2$  at the second surface and so on. At every equipotential surface the velocity changes its direction.
- A highly deviated electron is collected by the cylinder B. Its velocity  $v_n$  changes to  $v_n'$  to  $v_n''$  and so on at consecutive equipotential surfaces,  $S_1'$ ,  $S_2'$ , ....,  $S_n'$  due to the perpendicular forces  $f_{n_1}, f_{n_2}, ..., f_{n_n}$  respectively. Thus electrons emitted by the cathode, C in various directions are focused at point F.





(E.C. .....

# 5.2.2 : Magnetostatic Focussing

#### Freith equation (Fill) All - divisions dierf

- A uniform magnetic field has a focussing effect on an electron beam.
  - Consider an electron beam originating at point O. In the beam electrons travel in different directions.
    - Let an electron travelling with velocity v enter an uniform magnetic field making an angle  $\theta$ .

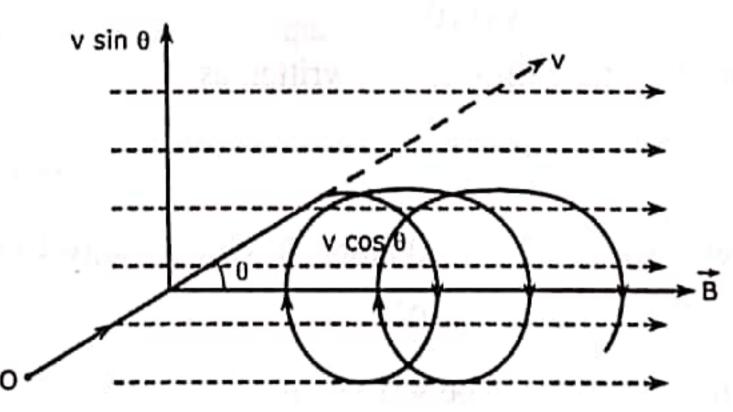



Fig. 5.2 : Magnetostatic Focussing

The velocity is resolved into two components.

- (i)  $v \cos \theta$  along the magnetic field and
- (ii)  $v \sin \theta$  perpendicular to the magnetic field.
- The electron will be acted upon by a magnetic force due to the velocity component v sin  $\theta$ . According to equation

the force is given by

 $f_m = e(v \sin \theta) B$  ......(5.2)

which will be balanced by the centripetal force as

$$\frac{m(v\sin\theta)^2}{R} = e(v\sin\theta)B \qquad .....(5.3)$$

and the electron will trace out a circular path of radius R. From equation (5.2) the radius of the circular path is obtained as

$$R = \frac{mv}{eB} \sin \theta$$

..... (5.3)

- From equation (5.1) it is obvious that
- There will be no force acting on the electron due to the component v cos  $\theta$ . However, there will be a translational motion of the electron due to v cos  $\theta$ .

The time taken by the electron to complete one circular motion is its time period,
 given by

 $T = \frac{2\pi R}{v \sin \theta}$ Using equation (5.3) here, this can be written as  $T = \frac{2\pi m}{eB}$ In T secs. the electron is translated along B with velocity v cos  $\theta$  over a distance  $p = (v \cos \theta) T$ Using equation (5.4), this can be written as  $p = \frac{2\pi m}{eB} v \cos \theta$ ......(5.5)

- Hence with the two velocity components the electron traces out a helical path of radius R and linear velocity cos 0. The parameter p is called the pitch of the helix.
- For small 0 values, the pitch is constant,

$$p = \frac{2\pi m}{eB}$$

# 5.3 Nanomaterials

The materials with structural units which are an aggregate of atoms or molecules with dimensions in Nano scale *i.e.*, between 1 nm and 100 nm are called *nanomaterial*. Engineered nanomaterials are produced with required dimensions *i.e.*, either one or two or all the three dimensions in the nanoscale.

- Nano materials that have at least one dimension in the nano scale are called nanolayers, such as thin films or surface coatings.
- If two dimensions of a nanomaterial are in the nano scale they are categorized as nanotubes or nanowires.
  - Lastly, nanomaterials that have all the three dimensions in the nano scale are called *nanoparticles*.
- Nanomaterials made up of nanometer sized grains are called *nanocrystalline* solids.

## 5.3.1 : Properties of Nano materials

The properties of nano materials are very different from those of the bulk materials. One important difference is the increased surface area to volume ratio of nanostructures. Nonstructures are also associated with quantum effects. These special properties are due to the size of the nano particles.

#### (a) Optical Properties

Depending upon their constituents, nanoparticles absorb a range of wavelengths and emit a characteristic wavelength. It is possible to alter the linear and non-linear optical properties by altering the crystals. Nonomaterials are, therefore, used in electrochromic devices.

When light is incident on a nanoparticle it can be scattered or absorbed. The total effect of scattering and absorption is referred to as extinction. Nanoparticles are in the size

regime where the fraction of light that is scattered or absorbed can vary greatly depending on the particle diameter. At diameters less than 20 nm, nearly all of the extinction is due to absorption. At sizes above 100 nm, the extinction is mostly due to scattering. By designing a nanoparticle with desirable diameter the optimal amount of scattering and absorption can be achieved.

#### (b) Electrical Properties

The size of nanomaterials leads to an increase in their ionization potential. Due to quantum confinement the electronic bands come closer and become narrow. Energy states are transformed into localized molecular bonds which can be altered by the passage of current or by the application of a field. The change in electrical properties is material dependant. As an example, metals undergo an increase in conductivity whereas in the case of non-metallic nanomaterials a decrease in conductivity is observed.

#### (c) Magnetic Properties

Nanosized materials are more magnetic than their counterparts in the bulk. Nanoparticles of non-magnetic solids also may demonstrate magnetic properties.

The dynamics of magnetization and demangetization of magnetic materials in any device are governed by the presence of domain walls and regions with magnetization in different directions. In the case of magnetic nanoparticles, the magnetic vectors become aligned in the ordered pattern of a single domain in the presence of a DC magnetic field. In such cases, phenomena of thermal excitation or quantum mechanical tunnelling change the hysteresis loop of magnetic nanoparticles as compared to the bulk material.

# (d) Mechanical and Structural Properties

Due to the formation of nanoparticles the atoms which are on the surface face different potentials in different directions. The resulting surface stress in nanoparticles modifies its mechanical and structural properties. The intrinsic elastic modulus of a nanostructured material is essentially the same as that of the bulk material having the micrometer sized grains until the grain size becomes very small, < 5 nm. If the grain size is below 20 nm the Young's modulus of the material begins to decrease from its value in conventional grain sized materials. Most nanostructured materials are quite brittle and display reduced ductility under tension.

In nanomaterials, because of their nanosize many of their mechanical properties are modified from its value in bulk materials. These properties among other are hardness and elastic modulus, fracture toughness, scratch resistance and fatigue strength. Energy ini water star destante

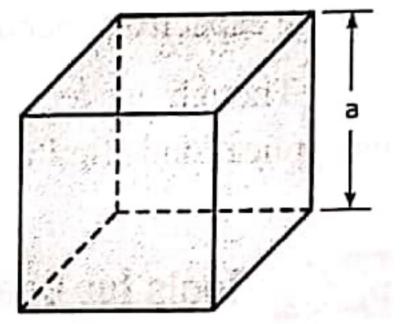
dissipation, mechanical coupling and mechanical non-linearities are influenced by structuring components at the nanometer scale.

# 5.3.2 : Surface Area to Volume Ratio

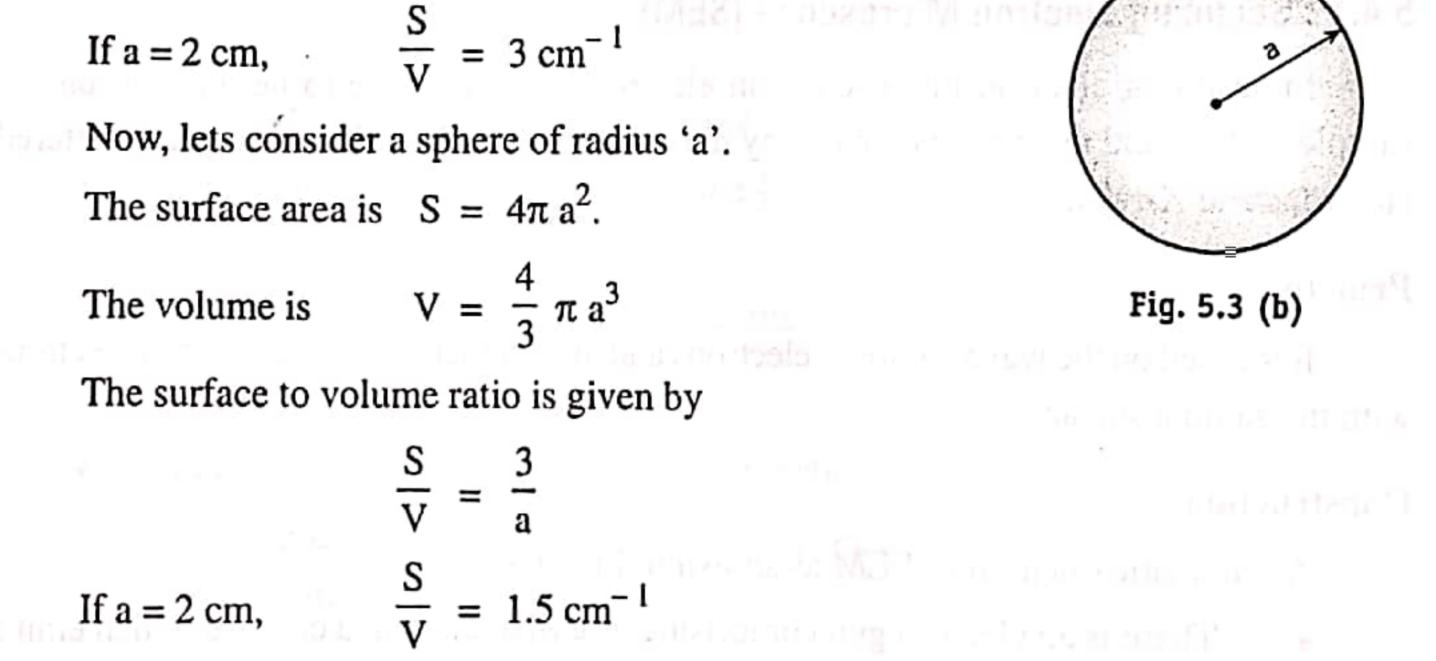
The surface area to volume ratio determines the efficiency of the object. The surface area to volume ratio for a material or substance made of nanoparticles has a significant effect on the properties of the material. Nanomaterials have much greater surface area per unit volume ratio compared with the bulk materials.

Take for example, a cube with side length 'a'.

The surface area of the cube is


$$S = 6a^2$$

The volume of the cube is


$$V = a^3$$

The surface to volume ratio is given by

$$\frac{S}{V} = \frac{6}{a}$$







The cube with larger S / V ratio than that of sphere is considered as more efficient in nanotechnology. The more the S / V ratio, the greater is the efficiency of the nanomaterial.

# 5.3.3 : Two Main Approaches in Nanotechnology

The two approaches used in nanotechnology to prepare nanomaterials are top down approach and bottom up approach which are explained below.

#### (i) Top Down Approach

In this technique nanostructures are fabricated by reducing a bulk material to nanoparticles through methods as cutting, carving and moulding. Despite the fact that those techniques introduce various structural defects in the material it is widely used in nanotechnology due to its simplicity.

#### **Bottom Up Approach** (ii)

In this technique, nanostructures are built up atom by atom or molecule by molecule. Even the nanostructure formed by a single molecule can be developed. The information storage capacity of nanostructures constructed in this approach is very high.

Though this technique does not cause much damage to the structure of the material its application is limited due to the complexities involved.

#### **Tools for Characterization of Nanoparticles** 5.4

Several forms of microscopy are available for studying nanomaterials are discussed below. Three most commonly used microscopies are as follows :

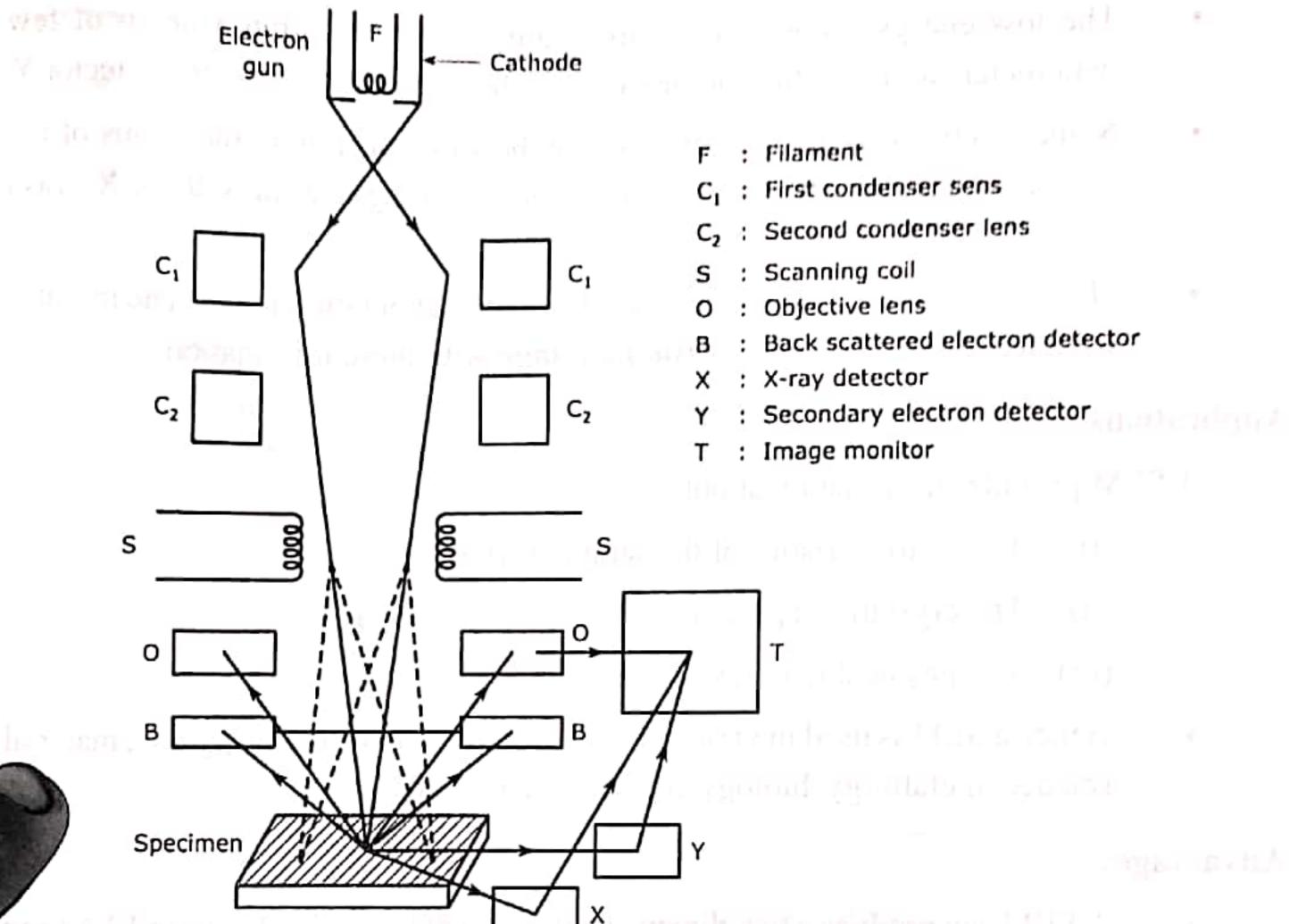


## 5.4.1 : Scanning Electron Microscope (SEM)

In scanning electron microscope an electron beam is made to be incident on the sample surface and its image is formed by the emitted secondary electrons, back scattered electrons and X-rays.

## Principles

It is based on the wave nature of electrons and the interactions of high energy electrons with the sample surface.


#### Construction

A schematic diagram of SEM as shown in Fig. 5.4.

- There is an electron gun comprising of a filament and a cathode which emit a beam of thermionically emitted electrons.
- The electron beam passes through two pairs of condenser lenses  $C_1$  and  $C_2$ .
  - The condensed electron beam then passes through a scanning coil S.
- Before being incident on the sample the electron beam passes through the objective lens. 积累的情况。

appressed and bollow in approximate which has overlapped beings

#### Scanned with CamScan



#### Shift can produce a tero dimensation 🖌 🗋 🖌

Fig. 5.4 : Scanning Electron Microscope (SEM)

- The detectors are used to detect the back scattered electrons, the secondary electrons and the X-rays.
- Taking input from the detectors the image is produced on the monitor.

다. 1964년 - 1월 27일 - 1987년 1

Working

- The electron gun produces a high energetic electron beam.
- The condensed lenses focus the diverging electron beam into a fine beam of a spot diameter of few nanometers.
- The scan coils deflect the electron beam in various directions to scan across the surface of the sample.
- The objective lens is used to focus the beam at a particular point on the sample surface.
- The back scattered electrons are reflected from the surface of the sample and are collected by the detector, B.

- The low energy secondary electrons are originated within a depth of few nanometers of the surface of the sample. These are collected by the detector Y.
- Some electrons of the incident electron beam go deep in to the atoms of the sample and knock off inner shell electrons resulting in X-rays, these X - rays are collected by detector X.
- Hence the detectors collect all the information about the sample. The monitor produces the final *two dimensional image* with these informations.

### Applications

A SEM provides information about

- (i) The characteristics of the sample surface.
- (ii) The crystallographic structure of the specimen.
- (iii) The physical features of the sample.
- Hence a SEM is used in various fields of science and technology e.g., material science, metallurgy, biology, medical science etc.

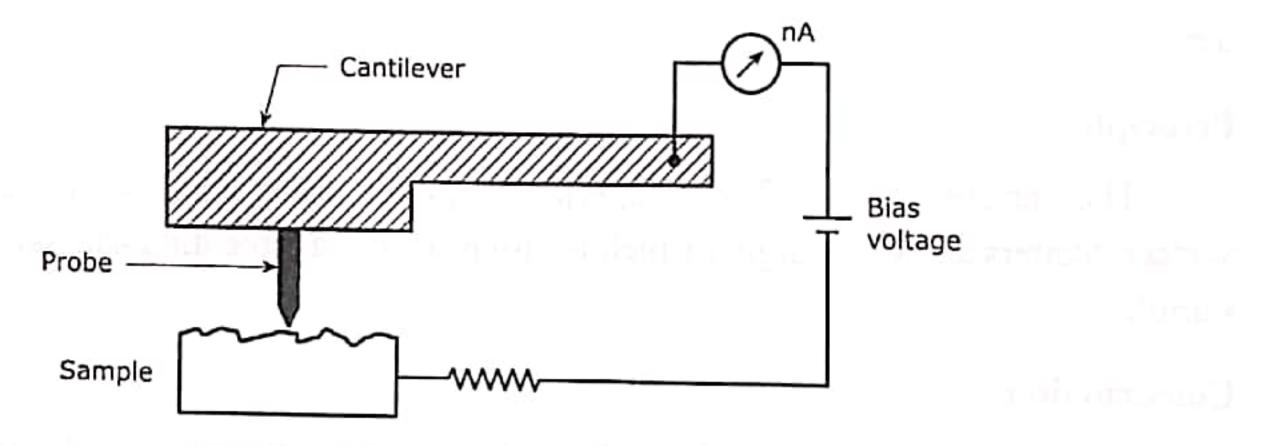
#### Advantages

- A SEM can produce a two dimensional image of resolution between 10 A° and 100 A°.
- A SEM has a very high magnifying power.

# Disadvantage

- A SEM can produce an image of the surface of the sample and not of its interior.
- The sample to be studied with a SEM is required to be conducting. For no conducting samples a thin conducting coating on the top surface is used.

# 5.4.2 : Scanning Tunneling Microscope (STM)


A scanning tunneling microscope (STM) is a very powerful microscope which can produce images of individual atoms of the sample surface.

# Principle

The STM works on the principle of quantum mechanical tunneling effect which means that the de Broglie electron waves tunnel through A thin insulating layer between two conducting materials.

#### Construction

- The STM consists of a probe with a very fine tip made up of tungsten or gold. The probe is fitted to a cantilever so that it can move over the surface of the sample. The distance between the tip and the sample surface is maintained around 1 nm. The tip of the probe is so fine that it is possible to scan the sample surface atom by atom.
- The probe is maintained at a positive potential and the sample is maintained at ٠ a negative potential with an insulating air gap between then, this is shown in Fig. 5.5.



### Fig. 5.5 : Scanning Tunnelling Microscope

#### Working

When the biasing is done electron waves from the tip of the probe tunnel through the air gap and reach the sample surface, giving rise to the probe current.

A STM works on two different modes :

- Constant height mode : In this mode the tip is moved on the sample surface (i) at a constant height around 4 A<sup>o</sup> to 7 A<sup>o</sup>. Due to the irregularities of the sample surface the probe current changes. The probe current is inversely proportional to the thickness of the air gap. The probe current gives the information about each atom of the sample surface with the help of which the image of the surface is produced.
- Constant current mode : In this mode, to maintain the probe current constant (ii) the height of the probe is varied according to the irregularities of the sample surface. From this height variation of the tip the image of the surface topography is produced.

. when a property of photo de

In the constant height mode the image information is faster so this is preferable to constant current mode.

### Applications

Due to its ability to form three dimensional images of the sample surface at atomic scale STM has wide applications in the study of characteristic of surfaces, size of molecule. STM is also used to image DNA.

# 5.4.3 : Atomic Force Microscope (AFM)

The atomic force microscope is a scanning probe microscope used as an imaging device.

# Principle

The various types of forces experienced by the probe while scanning the sample surface scatters a LASER signal which is turn produces a three dimensional image of the sample.

#### Construction



183

The AFM consists of a probe with a sharp tip fitted to a cantilever. The radius + of the tip is around 1 nm and the length of the cantilever is around 10 nm as shown in Fig. 5.6.

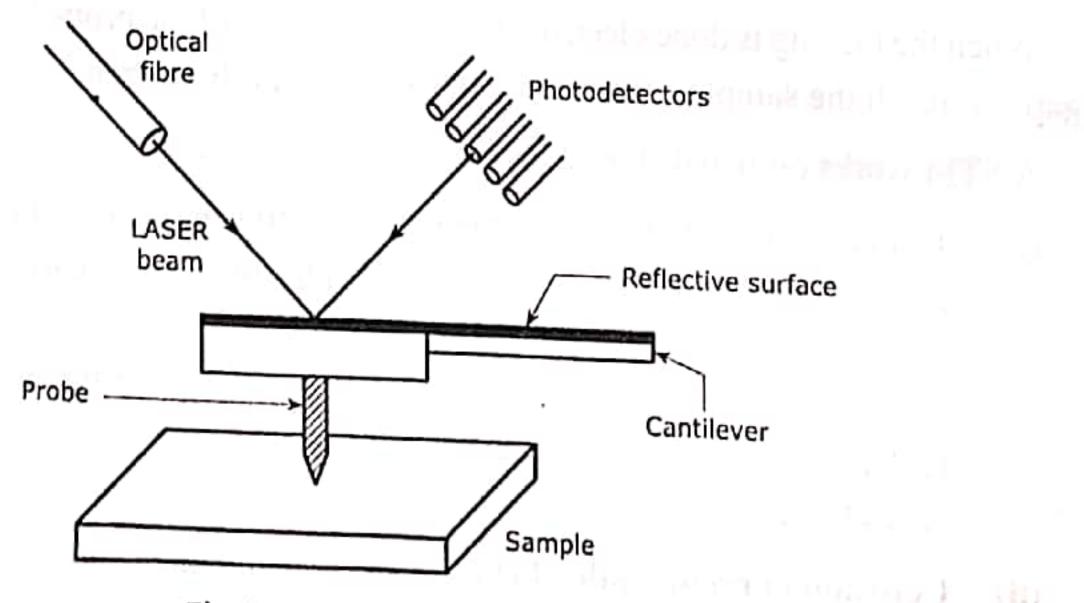



Fig. 5.6 : Atomic Force Microscope

The cantilever surface is highly reflective. From a LASER source a laser beam and made to be incident on the cantilever through an optical fiber. The reflected LASER beam is collected by a series of photo detectors.

#### Working

- As the probe is moved over the sample surface the tip experiences a force due ٠ to which the cantilever undergoes a deflection.
- According to the type of the sample the force can be of electrostatic, magnetic, + mechanical and even van Der Waals forces.
- The interactive force is detected by a series of photo detectors which collect + the LASER beam scattered at different direction due to the deflection of the probe.
- The three dimensional image carrying the information of the topography of ÷ the surface is then formed.

Advantages

- The resolution of the image is in nanometer range. ٠
- Both the conducting and non conducting surfaces can be scanned by an AFM. ٠

Disadvantage

The scanning process is slow.

Applications

AFM can be used to study various types of samples, e.g., conductors, semiconductors, insulators biological tissues etc. AFM is also used to form nanoparticles with its fine probe.

# 5.4.4 : Comparison of SEM and AFM

| Sr. No. | SEM                                  | AFM                                            |
|---------|--------------------------------------|------------------------------------------------|
| 1.      | The sample needs to be conducting.   | The sample can be conducting or nonconducting. |
| 2.      | The operation requires vacuum.       | The operation is possible in open atmosphere.  |
| 3.      | Resolution of the image is more.     | Resolution of the image is less.               |
| 4.      | It produces a two dimensional image. | It produces a three dimensional image.         |

Table 5.1

# 5.5 Methods to Synthesize

Various methods used for the production of nanomaterials are described here.

#### (a) Mechanical Method : Ball Milling Method

In this method small hard steel balls are kept in a container filled with the powder of the bulk material. The container spins about itself while rotating in a circular path about a central axis like a planet moves around the sun. The size of the steel balls used in milling is inversely proportional to the size of the nanoparticles they produce. This is a simple, economical method that can be used at room temperature. This is used to make nanoparticles of metals and alloys.

## (b) RF Plasma Technique : Sputtering

 In this technique the bulk material is kept in a pestle which is kept in an evacuated chamber as shown in Fig. 5.7.

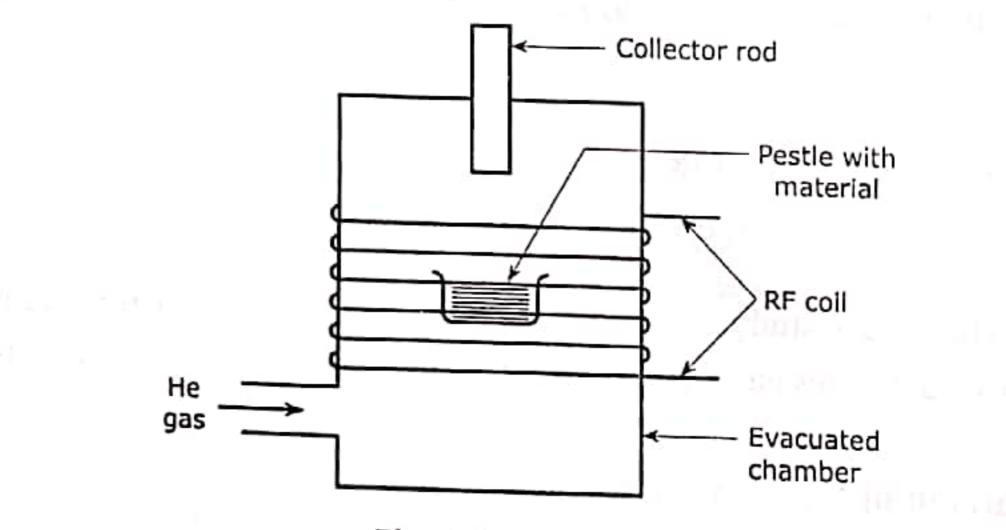



Fig. 5.7 : RF Plasma

- When a high voltage is applied to the RF coils heat in generated and the evaporation of the metal begins. Then cold He gas is allowed to enter the chamber. This results in high temperature plasma in the region of the coils. Nanoparticles are formed from the metal vapor and are collected by the collector.
- (c) Inert Gas Condensation : Vapour Diposition

This is the primitive technique of synthesizing nanomaterials. In this technique a metallic or inorganic material is vaporized. In the evaporation process ultrafine particles are formed. These particles rapidly form clusters which in turn condense into crystallites. Using a rotating cylinder and a cold finger both maintained at liquid nitrogen temperature

Engineering Physics - II

the nanoparticles are removed from the gas. This method is very useful to produce composite materials.

## (d) Chemical Solution Deposition Method : Sol-Gel Method

A sol is a solution with particles suspended in it. When the particles in the sol form long polymers throughout the sol it becomes a gel. The sol-gel process is a bottom up approach technique. The bulk material is converted to a powder and mixed in a chemical solution to form the sol. The sol is then partly converted to gel. The sol-gel solution through cavitation effect produce the nanoparticles.

Sol-gel synthesis is superior of all the available processes as it can produce large quantities of nanomaterials at relatively low cost. In this technique almost any material can be synthesized. It is very useful in producing extremely homogeneous alloys and composites controlling the physical, chemical and mechanical properties and the microstructure of the developed nanostructure.

#### (e) Laser Ablation

In this method a very high intensity (>  $10^7 \text{ w/cm}^2$  pulsed laser beam is focused on the material target. The pulsed laser generates very high temperature (>  $10^4 \text{ K}$ ) at the target element resulting in the vaporization of the material. A cool, high-density helium gas is made to flow over the target resulting in the formation of clusters of the target material. The clustered material is then thermalizes to room temperature and finally cooled to a few K to produce nanomaterials.

This technique has an extensive use because of the fact that a wide range of bulk material can be used in this top-down kind of approach.

# (f) Thermolysis

In this process the nanoparticles are formed by decomposing solids at high temperature having metal cations and molecular anions or metal organic compounds.

# 5.6 Applications of Nanomaterials

Nano materials have a wide verity of applications some of which are explained below.

1. Self cleaning glass : Nanoparticles are coated on a glass surface to make it photocatalytic and hydrophilic. In photocatalytic effect when UV radiation falls on the glass surface, the nanoparticles become energised and begin to

## Scanned with CamScan

Engineering Physics - II

break down the organic particles on the glass surface. On the otherhand, due to the hydrophilic nature the glass attracts water particles which then clean it.

 Clothing : Clothing with improved UV protection are manufactured by applying a thin layer of zine oxide nanoparticle on it.

Also clothes can have nanowhiskers that can make them repel water and other materials thus making them stain resistance.

Silver nanoparticles coating can have an antibacterial effect on the clothes.

3. Scratch resistant coating : Materials like glass are being coated with thin films of hard transparent material to make it scratch resistant.

Antifog glasses with transparent nanostructures conduct electricity and heat up the glass surface to keep it fog free.

- 4. Smart materials : Nanotechnology enabled smart materials may be able to change and recombine much like the shape shifting cyborg in the movie terminator 2. They may incorporate nonsensors, nanocomputers and nanomachines into their structure which may enable them to respond directly to their environment.
- 5. Cutting Tools : Cutting tools made of nanocrystalline materials are much harder, much wear-resistant and very long lasting.
- 6. Insulation Materials : Nanocrystalline materials synthesized by the sol-gel techniques results in a foam like structure called aerogel. These are porous and extremely light but can withstand heavy weight. These are very good insulators. Aerogels are also used to boost the efficiency of transducers.
- 7. Ductile, Machinable ceramics : Normal ceramics are very hard, brittle and difficult to machine. However, the nanocrystalline ceramics possess good formability, good machinability combined with excellent physical, chemical and mechanical properties.
- 8. Low-cost flat-panel electrochromic displays :

negativent.

- Electrochromic devices are very similar to liquid crystal displays. These devices display information by changing color when a voltage is applied. If the polarity of the voltage is reversed the colors gets bleached.
- If nanocrystalline materials are used in these devices the resolution, the brightness and the contrast of the display increases greatly.

Nanotechnology

- **9.** Elimination of pollutants : Since nanomaterials exhibit enhanced chemical activity they can be used as catalysts to react with pollutants like carbon monoxide and nitrogen oxide to prevent environmental pollution arising from burning gasoline and coal.
- 10. High power magnets : The nanocrystalline magnets have very high magnetic strength given by its coercivity and saturation magnetization value. These magnets have applications in automobile engineering, marine engineering, in medical instruments like MRI etc.
- 11. High energy density batteries : Nanocrystalline materials synthesized by sol-gel treatment has foam like structure which can store a large amount of energy hence batteries with separator plates made up of these materials do not need frequent changing.
- 12. High sensitivity sensors : Sensors made of nanocrystalline materials are extremely sensitive to the change in their environment. These sensors are used as smoke detectors, ice detectors on aircraft wings, automobile engine performance sensor etc.
- **13.** Aerospace components : Aerospace components made of nanomaterials are stronger, tougher and more long lasting than those with conventional materials.

This increases the life of the aircraft greatly.

**Important Points to Remember** 

- 1. The surface area to volume ratio : This determines the efficiency of the object.
- 2. Two approaches : Top down and bottom up.
- 3. SEM : Electron wavelength :  $\lambda = \frac{h}{\sqrt{2meV}}$ .

Sample needs to be conducting.

Operation are possible only in vacuum.

A high resolution two dimensional image is formed.

4. STM works on quantum mechanical tunneling effect.

Sample should be conducting.

A three dimension contour of the sample surface is imaged at atomic scale.

6.

- 5. AFM : Sample may be conducting or nonconducting.
  - A three dimensional image of the topography of the surface is formed. Resolution is very high.
  - Nano materials : Nano layers 1 dimension in nano scale

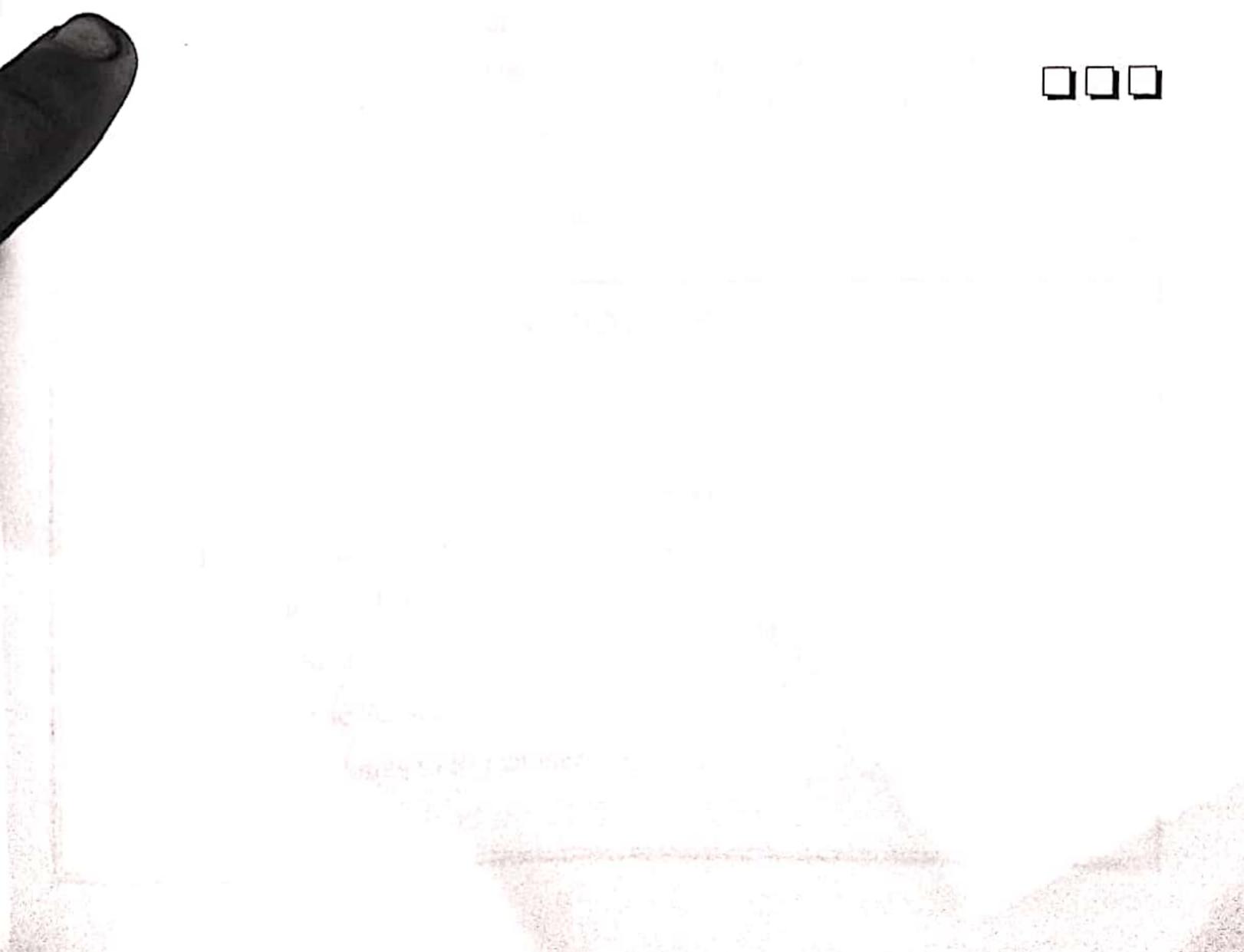
Nanotubes / nanowires - 2 dimensions in nano scale

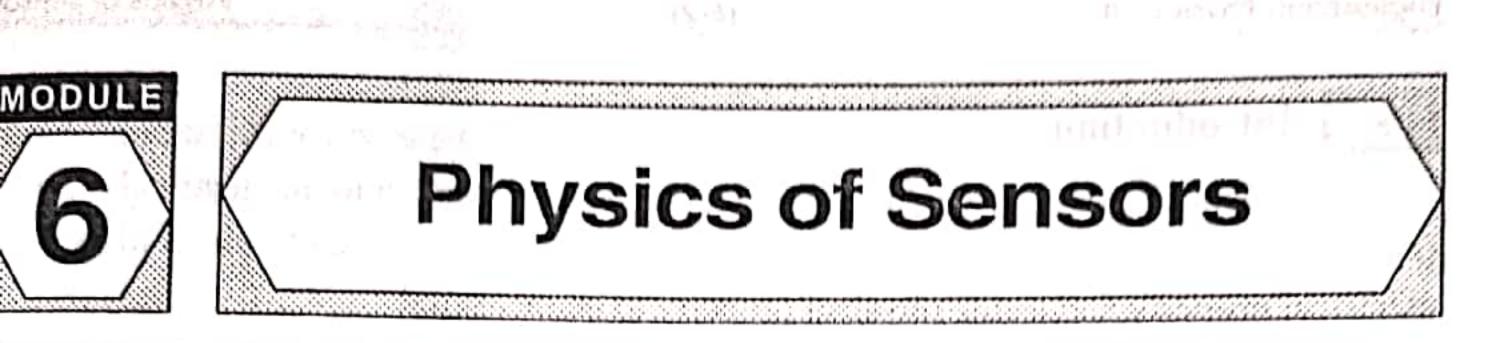
Nanoparticles - 3 dimensions in nano scale



- 1. What are nanomaterials and what are their different types?
- 2. Explain the significance of 'surface area to volume ratio'.
- 3. Explain top down and bottom up approaches.
- With schematic diagram explain the principle, construction and working of scanning electron microscope.
- With schematic diagram explain the principle, construction and working of a scanning tunneling microscope.
- With schematic diagram explain the principle, construction and working of a Atomic Force microscope.
- 7. Compare the SEM and AFM.
- 8. Discuss different methods to synthesize nanomaterials.
- 9. Discuss various applications of nanomaterials.

 $\mathbf{P}$  Previous University Examination Questions with Solutions  $\mathbf{P}$ 


- Explain top down and bottom up approaches to prepare nanomaterials. Explain one of the methods in detail. (M.U. Dec. 2015, 16, 17; May 2015, 19) (5 m)
   [ Refer § 5.3.3 ]
- 2. What is the difference between bottom up approach and top down approach with respect to nanotechnology? (M.U. May 2017) (5 m)


[Refer § 5.3.3]

| Engineering | Physics - |  |
|-------------|-----------|--|
|-------------|-----------|--|

(5-19)

- 3. Draw the schematic diagram of SEM and explain its construction and working. (M.U. May 2013, 14, 17, 18; Nov. 2018; Dec. 2013, 14, 16, 19) (5 m) [ Refer § 5.4.1 ]
- Explain the construction and working of atomic force microscope.
   [ Refer § 5.4.3 ] (M.U. Dec. 2012, 16, 17; May 2015, 16, 19) (5 m)
- 5. What are different techniques to synthesize nanomaterials? Explain one of them in detail.
  (M.U. May 2013, 17; Dec. 2016, 19) (5 m)
  - [ Refer § 5.5 ]
- Explain the physical methods for synthesis of nanoparticles. (M.U. May 2014) (5 m)
   [ Refer § 5.5 ]
- What are nanomaterials? Explain one of the methods of its production in details.
   [Refer § 5.5]
- Explain sputtering method for synthesis of nanomaterials. (M.U. May 2019) (5 m)
   [ Refer § 5.5 (b) ]





(**Prerequisites :** Transducer concept, Meaning of calibration, Piezoelectric effect.) Resistive Sensors :

(a) Temperature measurement : Pt100 construction, calibration,

(b) Humidity measurement using resistive sensors.

Pressure Sensor : Concept of pressure sensing by capacitive, Flux and inductive method, Analog pressure sensor — Construction, Working and Calibration and Applications.

Piezoelectric Transducers : Concept of piezoelectricity, Use of piezoelectric transducer as ultrasonic generator. Application of ultrasonic transducer for distance measurement, Liquid and air velocity measurement.

Optical sensor : Photodiode, Construction and use of photodiode as ambient light neasurement and flux measurement.

Pyroelectric Sensors : Construction and working principle, Application of yroelectric sensor as bolometer. (05 Hours) (Weightage - 15%)

**ourse Outcome : CO6 :** Learner will be able to interpret and explore basic ensing techniques for physical measurements in modern instrumentations.

#### SYNOPSIS 6.1 Introduction 6.2 Prerequisites Resistive Sensors : Resistive Transducers 6.3 6.4 Pressure Sensor or Pressure Transducer 6.5 **Piezoelectric** Transducers 6.6 **Optical Sensors** 6.7 Pyroelectric Sensors Important Points to Remember Exercise

..... (6.1)

# **Gal Introduction**

A sensor is a device which converts a physical property into an electrical property (such as resistance). A sensing system is a system, usually a circuit, which allows this electrical property and as the physical property to be measured.

# 62 Prerequisites

# 6.2.1 : Transducer

A transducer is defined as a device that receives energy from one system and transmits it to another, often in a different form. The energy transmitted by transducers may be electrical, mechanical or acoustical.

# 6.2.2 : Calibration

Calibration is an essential part of industrial instrument and control. Calibration can be defined as the comparison of specific values of the input and output of an instrument with a corresponding reference standard. Though calibration does not guarantee the performance of an instrument, it offers a guarantee to the device or instrument that it operates with the required accuracy and the range specifications under the stipulated environmental conditions. Calibration must be performed periodically to test the validity of the performance of the device or the system.

# 6,3

# **Resistive Sensors : Resistive Transducers**

Resistive sensors are resistive transducers whose resistance varies with various physical quantities like temperature, pressure, force displacement, vibration, etc.

The resistive transducers convert the physical quantities into variable resistance which is easily measured by the meters.

# Principle

The resistive transducer element works on the fact that the resistance (R) of an element is directly proportional to the length (*l*) and inversely proportional to the area (A) of the conductor, *i.e.*,

$$R = \rho \frac{1}{\Lambda}$$

where  $\rho$  is the resistivity of the conductor.

## 6.3.1 : Temperature Measurement : Pt 100 Sensor

The resistance of a conductor changes when its temperature is changed. This property is utilised for the measurement of the temperature. The resistance thermometer is an instrument used to measure electrical resistance of the conductor to determine the temperature.

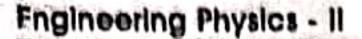
The main part of a resistance thermometer is its sensing element. The characteristics of the sensing element determines the sensitivity and the operating temperature range of the instrument.

The sensing element maybe any material that exhibits a relatively large resistance change with change in temperature. Also the material used should be very stable in its characteristics which is necessary to maintain the calibration of the resistance thermometer.

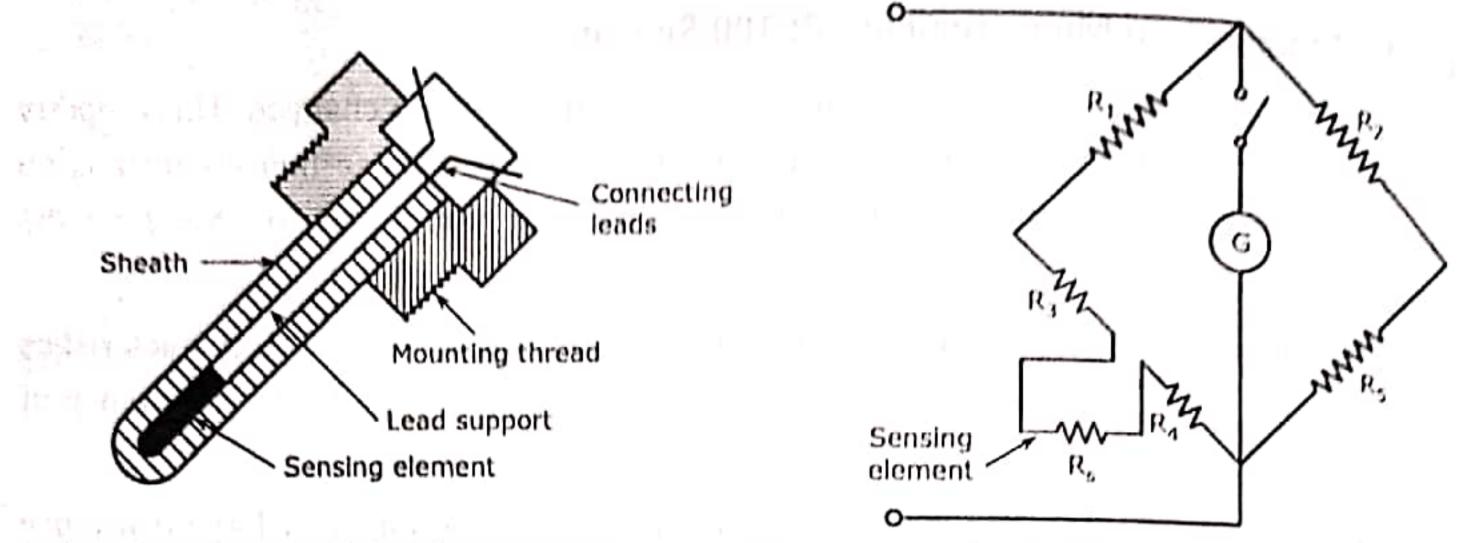
Platinum, Nickel and Copper are the metals most commonly used as the sensing element. Nickel and Copper being less expensive are used in low range industrial applications. Platinum though expensive has high stability and wide operating range (-260° C to 1100° C) and hence is commonly used for most laboratory work and for industrial measurements of high accuracy.

#### Pt 100 Sensor

Pt 100 sensors are the most common type of platinum resistance thermometer. Here, Pt is the symbol of Platinum and 100 refers to the fact that at OC the sensor has a resistance of 100 Ohms.


**Principle :** The relationship between the temperature and resistance of a conductor in the temperature range near 0° C can be calculated from the equation

where,  $R_t = resistance$  of the conductor at t C.


 $R_0 =$  resistance of the conductor at the reference temperature (usually C)

- $\Delta t =$  difference between the operating and the reference temperatures
- $\alpha$  = temperature coefficient of resistance of the conductor.

Almost all metallic conductors have a positive temperature coefficient of resistance and so their resistance increases with an increase in temperature. A high value of  $\alpha$  is desirable in a temperature sensing element so that a substantial change in resistance occurs for a relatively small change in temperature.



Physics of Sensors



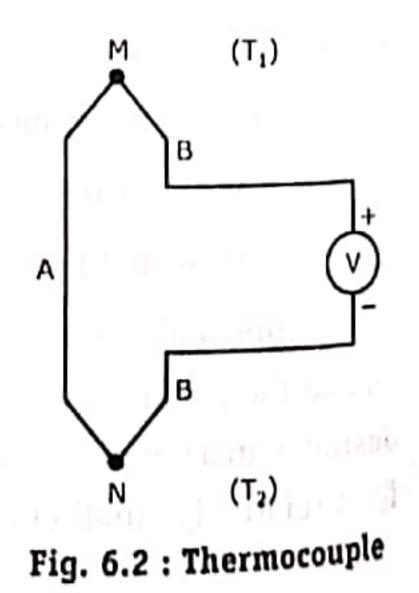


(b) Circuit diagram of Pt 100

Fig. 6.1 : Platinum resistance thermometer Pt 100

The construction of an industrial Pt100 sensor is shown in Fig. 6.1 (a). The changes in the resistance of the sensor caused by the changes in temperature are detected by a Wheatstone bridge circuit as shown in Fig. 6.1 (b).

The sensing element  $R_s$  is made of a material having a high temperature coefficient,  $\alpha$  and  $R_1$ ,  $R_2$  and  $R_5$  are made of resistances that are practically constant under normal temperature changes. When no current flows through the galvanometer the normal principle of Wheatstone bridge states the ratio of resistance is


When  $R_s$  changes due to a change in the temperature the galvanometer shows a deflection and knowing  $\alpha$  of the sensing element the temperature can be determined.

# 6.3.2 : Thermocouple

Thermocouples are temperature sensors that work on thermoelectricity. Thermoelectricity is the electrical energy generated by a temperature difference by thermoelectric effect. The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa.

# Principle : Seebeck Effect

In Fig. 6.2, junction M and N are seen to be formed by two dissimilar metals A and B. If the junction M and N are held



**Engineering Physics - II** 

at two different temperatures  $T_1$  and  $T_2$  respectively, a thermoelectric emf is developed across the junctions. The thermoelectric emf causes a current through the loop of the junction. This current is known as thermoelectric current. This phenomenon is known as Seebeck effect.

The thermoelectric emf generated is of the order of several microvolts per kelvin difference.

The voltage developed in the circuit is proportional to the temperature difference  $(T_2 - T_1)$  between the two junctions M and N respectively. Hence,

$$V = \alpha (T_2 - T_1)$$

where,  $\alpha = \alpha_B - \alpha_A$  with  $\alpha_A$  and  $\alpha_B$  being the Seebeck coefficients of metals A and B respectively.

#### **Origin of Thermo emf**

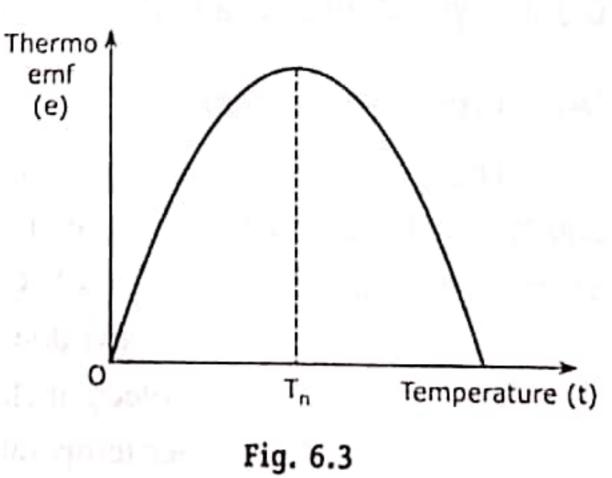
adden addans,

When a temperature gradient is maintained between the two junctions valence electrons diffuse from the hot side to the cold side leaving behind positive ions on the hot side and generating – ve ions on the cold side. This gives rise to a thermocouple voltage.

The thermo emf generated varies with temperature as

 $e = at + bt^2$ 

..... (6.4)


re, a and b are called Seebeck constants of the thermocouple. Equation (6.4) is known ebeck equation.

If the temperature of the cold junction is of at 0° C and the temperature of the hot junction is varied the generated thermo emf exhibits a parabolic behaviour as shown in Fig. 6.3.

The thermo emf increases parabolically  $T_n$  Temperature (t) with the temperature and becomes maximum at a temperature  $T_n$ , known as the neutral temperature which is constant for a given pair of metals. After this as the temperature of the hot junction increases at a temperature  $T_i$  known as the **inversion temperature** the thermo emf becomes zero.

The graph shown in Fig. 6.3 is called the *calibration curve* of a given thermocouple.

musioning of the still Street



Physics of Sensors

(6.5)

The slope of the calibration curve is found from equation as

$$\frac{de}{dt} = a + bt$$

$$At t = t_n, \qquad \frac{de}{dt} = 0$$

$$\therefore \qquad a + b t_n = 0 \qquad \therefore \qquad t_n = -\frac{a}{b} \qquad \dots$$

$$At t = t_i, \qquad e = 0$$

From equation,

÷.

This follows from equations (6.5) and (6.6) that

To measure an unknown temperature the hot junction is kept at that temperature, the cold junction being maintained at 0° C. The thermo emf generated by the thermocouple is noted and the corresponding temperature from the calibration curve is read. Thus, the unknown temperature is determined.

# 6.3.3 : Type J and Type K Thermocouples

# (A) Type J Thermocouple

The type J is very common and general purpose thermocouple made up of iron and constantan. It has small temperature range and a short life span at high temperatures. It has a sensitivity of approximately  $50 \,\mu$ V/C and a narrow temperature range of  $-40 \,\text{C}$  to  $750 \,\text{C}$ . The temperature range is narrow due to the Curie point of iron being 770 C where iron undergoes an irreversible molecular change. The J type thermocouple is a popular one that This thermocouple is succeptible to oxidation. So it is not recommended for damp conditions or low temperature monitoring.

# (B) Type K Thermocouple

The type K thermocouple is a commonly used general purpose thermocouple made up of chromel (90% Nickel and 10% chromium) and alumel (95% Nickel, 2% Aluminium, 2% Manganese and 1% Silicon). This thermocouple is inexpensive and reliable with a Engineering Physics - II

wide temperature range from -200 C to 1350 C, high accuracy and a sensitivity of 41  $\mu$ V/C.

Type K thermocouples are used for measurement in many different types of environments such as water, mild chemical solutions, gases and dry areas. Engines, oil heater and boilers are examples of places where they may be found. These are used as thermometers in hospitals and food industry. The type K thermocouples are commonly used in nuclear applications because of its relative radiation hardness.

#### 6.3.4 : Humidity Measurement Using Resistive Sensors

The device used to measure humidity is called a Psychrometer. This device consists of a thermocouple with one dry bulb and one wet bulb. The thermocouple used in a psychrometer is a chromel - constantan thermocouple.

The dry bulb is simply left exposed to the air to measure the temperature. The wet bulb is covered with a cloth which and dipped in distilled water until it is ready to use. While measuring the humidity the wet bulb is then kept exposed to air. As the water evaporates it cools the wet bulb. By measuring the cooling of the wet bulb the quantity of water evaporated and thence the humidity can be determined. Moist air allows a little evaporation and a small decrease in wet bulb temperature and dry air absorbs lot more moisture, causing too much cooling of the bulb.

Because of the simple set up a psychrometer is a cheap but reliable instrument for humidity measurement.

na z statu statu static de 1975 - statu a statu statu st



# **Pressure Sensor or Pressure Transducer**

A pressure sensor is a device which converts an applied pressure into a measurable electrical signal. These are used for pressure measurement of gases and liquids.

Pressure sensors are used for controlling and monitoring in thousands of everyday applications. Pressure sensors can also be used to indirectly measure other variables such as the speed of a fluid or a gas flow, water level and altitude.

The sensors have a sensing element of constant area and respond to force applied to this area by fluid pressure. The force applied will deflect the diaphragm inside the pressure transducer. The deflection of the internal diaphragm is measured and converted into an electrical output. This allows the pressure to be monitored by microprocessors programmable controllers and computers along with similar electronic instruments.

Physics of Sensors

#### **Engineering Physics - II**

Some sensors are pressure switches which automatically turns on or off at a particular pressure.

There are two kinds of pressure sensors :

 Analog pressure sensors : These sensors work by converting pressure into an analog electrical signal.

2. Digital pressure sensors : These sensors convert pressure into a digital electrical signal.

# 6.4.1 : Capacitive Pressure Transducer

Capacitive pressure sensors are devices used to measure pressure by detecting the change in the electrical capacitance caused by the movement of a diaphragm due to the pressure applied.

#### Principle

The capacitive pressure sensor operates on the principle that if the sensing diaphragm between two capacitor plates is deformed by a differential pressure an imbalance of capacitance will occur between itself and the two plates.

The capacitance of a parallel plate capacitor is given by

$$C = k \frac{A \in_0}{d}$$
 (farad)

where, A is the area of each plate and d is the spacing between them. The dielectric constant of the insulator is k and  $\epsilon_0 = 9.85 \times 10^{12}$  F/m the permittivity of free space.

## **Construction and Working**

Since, the capacitance is inversely proportional to the spacing of the parallel plates any variation in causes a corresponding variation in the capacitance.

In Fig. 6.4, it is seen that each plate forms a capacitor with the sensing diaphragm which is connected electrically to the metallic body transducer.

Two pressures are set up on the diaphragm from its two sides. A net force proportional to

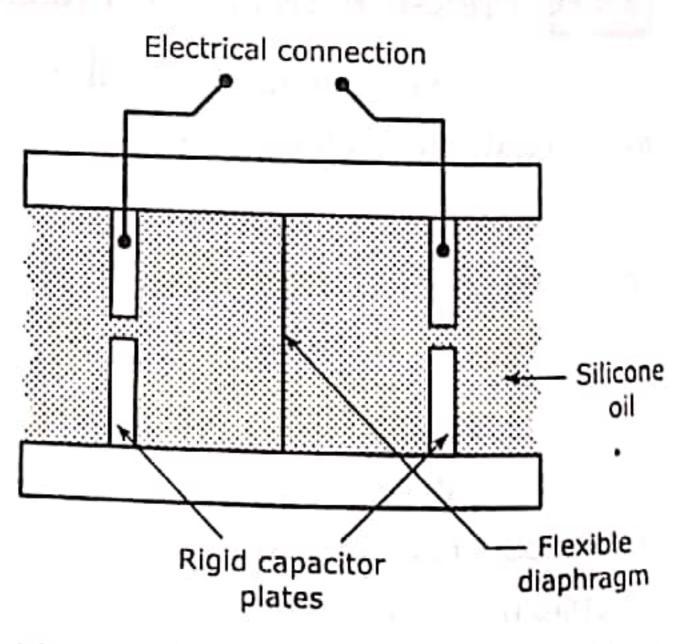



Fig. 6.4 : Capacitive pressure transducer

Approximation and an interest

these two pressures acts upon the diaphragm and deflects it. The displacement of the diaphragm is sensed as a difference between the capacitances of its two sides.

This change in capacitance is measured using a bridge circuit to measure the equivalent pressure signal.

#### 6.4.2 : Flux and Inductive Method

Inductive sensors are the devices in which a physical quantity is measured with the help of a change in the self inductance of a single coil or the mutual inductance between two coils. The physical quantity could be displaement, force, pressure, torque, velocity, acceleration and vibration.

#### Principle

Inductive sensors work on the principle of magnetic induction of magnetic material, *i.e.*, Faraday's law of induction.

#### **Construction and Working**

As seen in Fig. 6.5, the magnetic materials are used in the transducers in the path of the flux. There is some air gap between them. The change in the circuit inductance can be occurred by varying the air gap between them.

An exciter provides a current through the coil and the inductor develops a magnetic field when a current flows through it. Alternately, a current is developed through an inductor when the magnetic field associated with it is varied.

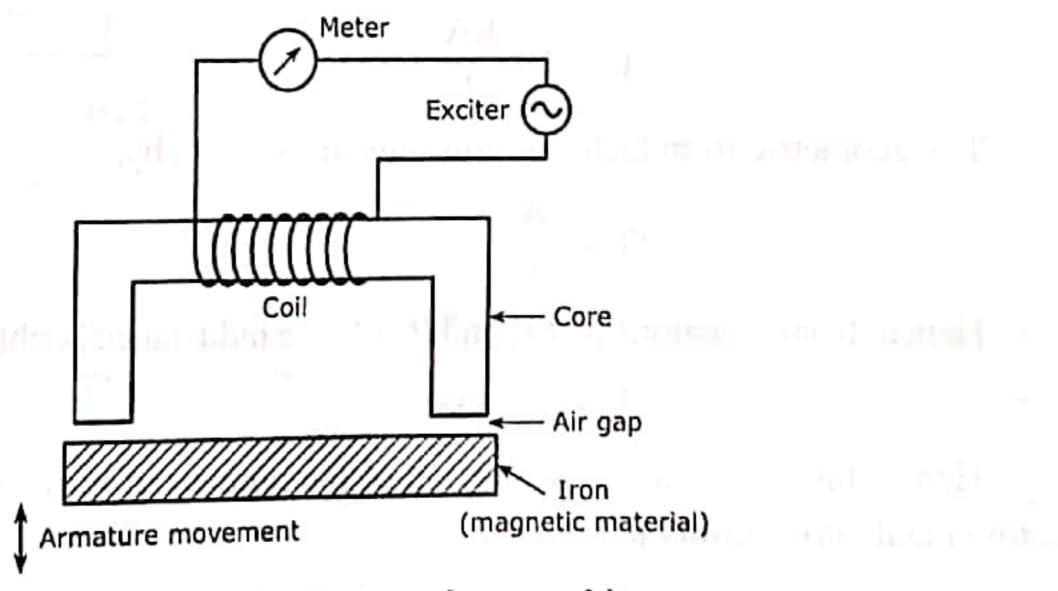
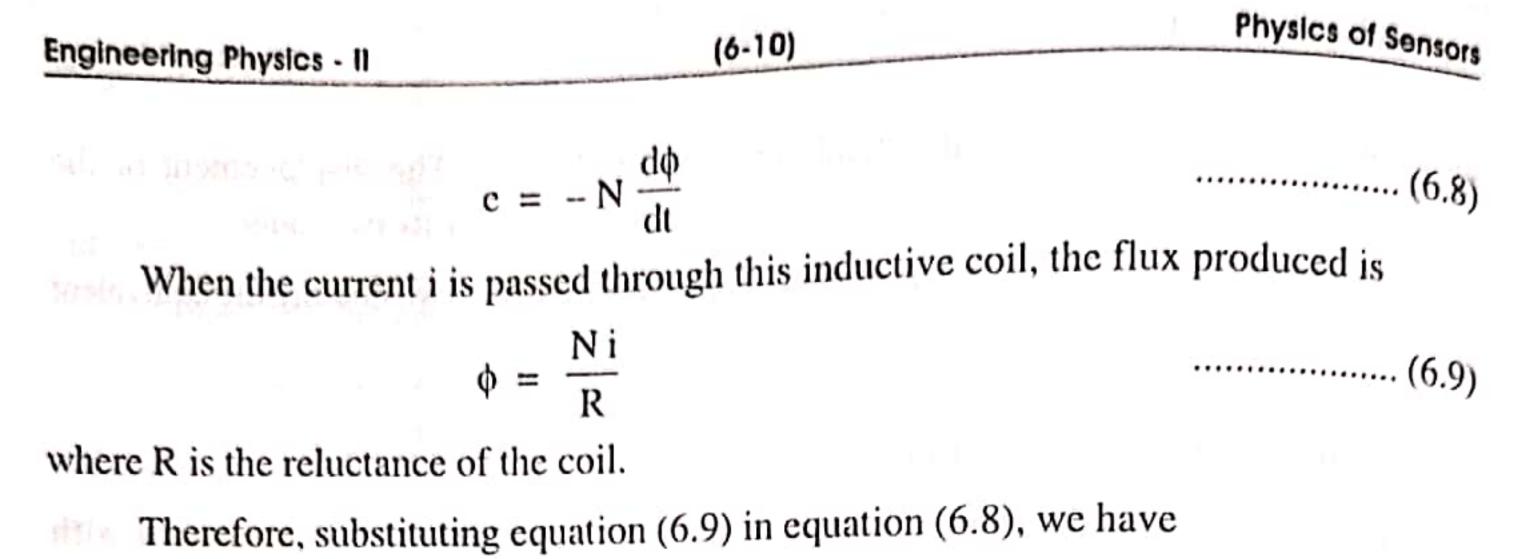




Fig. 6.5 : Inductive transducer working

According to Faraday's law of induction, the temporal variation of the magnetic flux \$\\$ through a coil of N turns induce a voltage



 $e = -N \frac{d}{dt} \left(\frac{Ni}{R}\right) = \frac{N^2}{R} \cdot \frac{di}{dt}$ 

The self inductance is given by

「物理教」に、「「「「読者」」「発行」などで、

Therefore, the output from an inductive transformer can be in the form of either a change in voltage or a change in reluctance.

Also we know that the reluctance R is given by  $R = \frac{l}{\mu A}$ 

where l and A are the length and the cross-sectional area of the coil respectively and  $\mu$  is the permeability of the medium.

Thus, from equations (6.10) and (6.11), we get the inductance as,

The geometric form factor of this inductor is given by,

Hence, from equations (6.12) and (6.13) the inductance is obtained as,

 $I = N^2 \mu G$ 

..... (6.14)

Hence, the inductance is a function of the number of turns N, the geometric form factor G and permeability µ.

104681

## Applications

Inductive transformers are mostly used in the determination of the position and dynamic motion of a metallic object without touching them.

# 6.5 Piezoelectric Sensors or Transducers

A piezoelectric sensor is an electroacoustic transducer used to measure a pressure or a mechanical stress by converting them into an electrical voltage.

The piezoelectric transducers use special type of materials which induce a voltage when a pressure or stress is applied to it. Such materials are known as electro-resistive materials. Examples of these materials are Quartz, Rochelle salt and Barium Titanate.

# 6.5.1 : Piezoelectricity

Piezoelectricity is the electricity generated by some solid materials in response to applied mechanical stress.

# 6.5.2 : Principle of Piezoelectric Sensors : Piezoelectric Effect

Some asymmetric crystalline solids like quartz, tourmaline and Barium titanate exhibit a very special characteristic. Thin slices of these crystals develop a potential difference across the two opposite faces when subjected to mechanical stress in a perpendicular direction as shown in Fig. 6.6. This is known as direct piezoelectric effect. If the direction of the mechanical stress is reversed the potential difference changes its polarity as shown in Fig. 6.6.

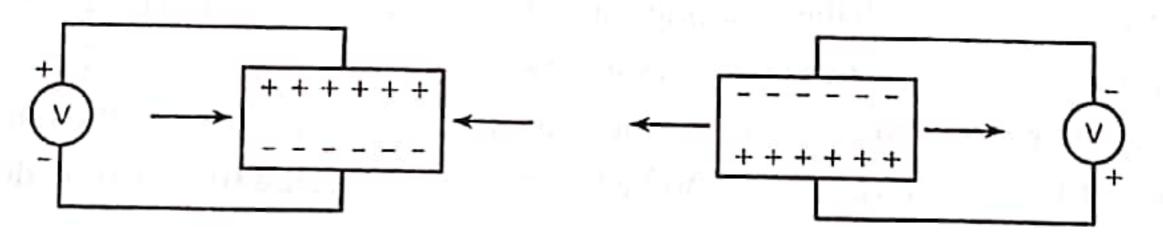



Fig. 6.6 : Direct piezoelectric effect

However, ultrasonic waves are produced by inverse piezoelectric effect which is explained below.

If a voltage is applied across a pair of opposite faces of a piezoelectric crystal it experiences a mechanical stress, *e.g.*, expansion or contraction across the perpendicular faces. If the polarity of the applied voltage is reversed the nature of the mechanical stress is also reversed, *e.g.*, expansion changes to contradiction and contraction changes to expansion as shown in Fig. 6.7.

THUL PRODUCT OF STORY OF STREET OF STREET OF STREET

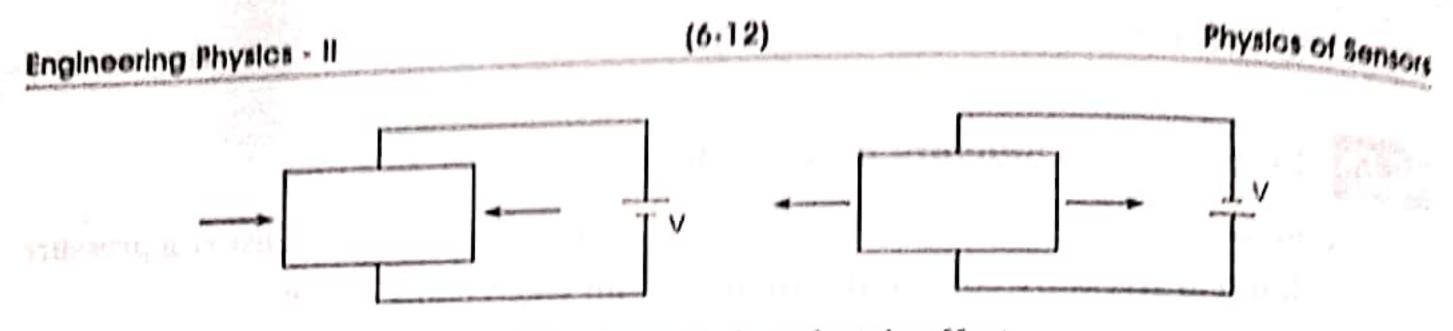



Fig. 6.7 : Inverse piezoelectric effect

When the voltage is changed to an alternating voltage, the crystal slice exhibits

alternate extension and contraction and starts vibrating at the frequency of the voltage. If the voltage frequency is increased to the ultrasonic frequency range, *i.e.*, above 20 kHz the crystal slice vibrates at that frequency and ultrasonic of the same frequency is generated.

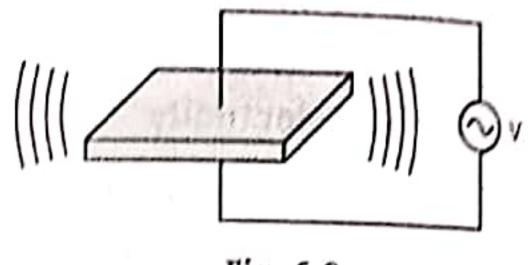
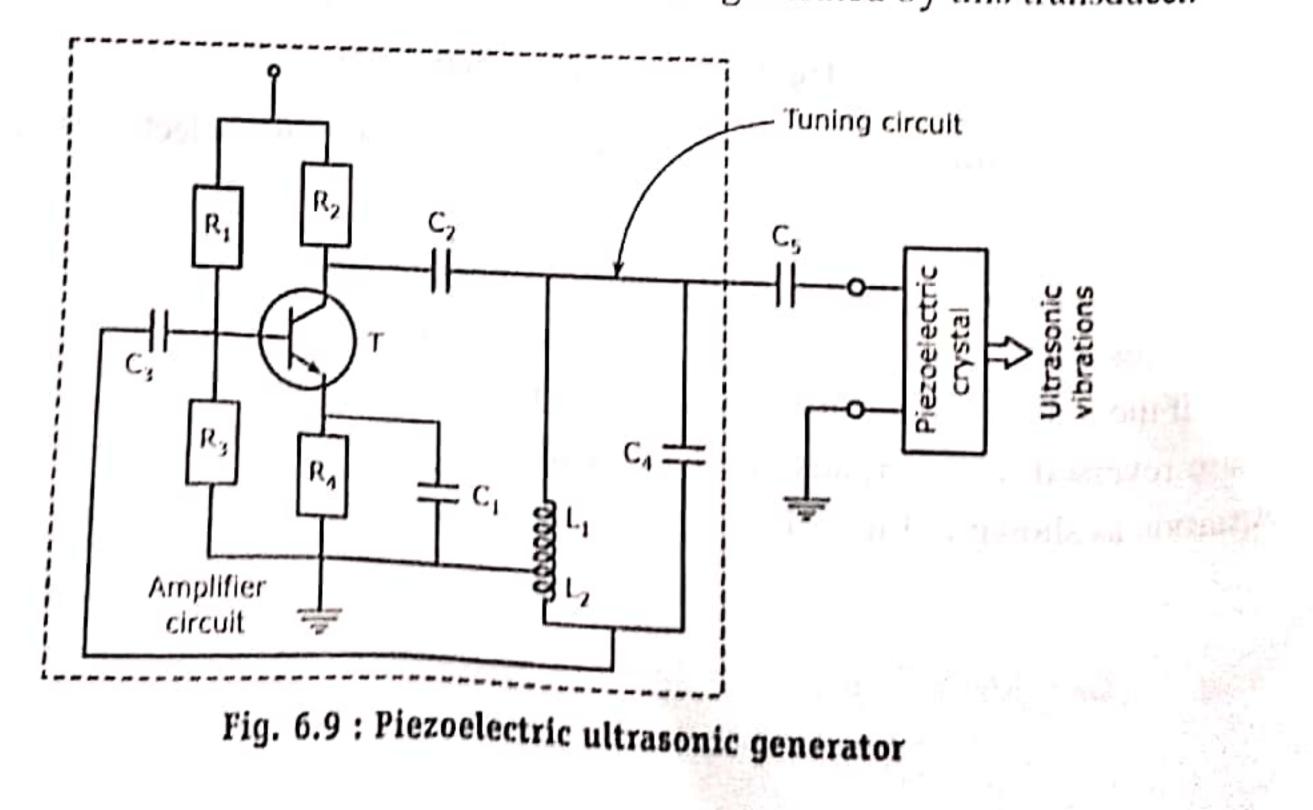




Fig. 6.8

#### 6.5.3 : Piezoelectric Ultrasonic Generator

The circuit diagram as shown in Fig. 6.9 shows that the piezoelectric ultrasonic generator uses a transistor which is biased through a network of resistances  $R_1$ ,  $R_2$ ,  $R_3$  and  $R_4$ . The coils  $L_1$ ,  $L_2$  and capacitor  $C_4$  constitute the tuning (resonant) circuit. The tuning circuit is coupled to the transistor T through the coupling capacitor  $C_2$ . Capacitor  $C_3$  provides the positive feedback to the amplifier T. The oscillators generated by the tank circuit are sustained and the electrical signal obtained at the output is applied to the electrodes of the

piezoelectric crystal through the coupling capacitor  $C_5$ . Because of high frequency electrical signal applied to it the piezoelectric crystal produces ultrasonic waves. The frequency of these ultrasonic waves can be varied by the values of the components of the tuning circuit. Ultrasonics of frequency value upto 500 MHz can be generated by this transducer.



# 6.5.4 : Applications of Ultrasonic Transducers

1. Distance measurement : The method of distance measurement using ultrasonics is based on the pulse-echo method. The ultrasonic sensor emits a high frequency (> 20 kHz) sound pulse. The time taken by the signal to reach the object and travel back to the source after being reflected by the object, is measured. This is called the time of flight. The speed of sound is 341 m/sec in air. Using the following mathematical equation

Distance = 
$$\frac{\text{Time} \times \text{Speed of sound}}{2}$$

2

the distance of the object from the transducer is measured as seen in Fig. 6.10.

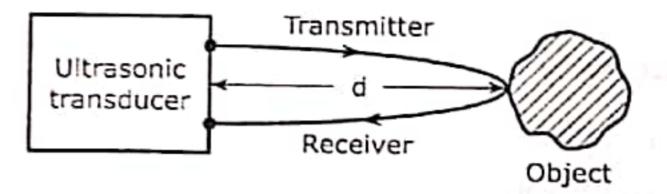



Fig. 6.10 : Ultrasonic distance meter

2. Liquid and air velocity measurement : The method of velocity measurement using ultrasonic waves is based on the pulse-Doppler method. In the case of liquids and gases, the object keeps moving which introduces Doppler effect. Hence, the reflected echo is Doppler shifted as seen in Fig. 6.11.

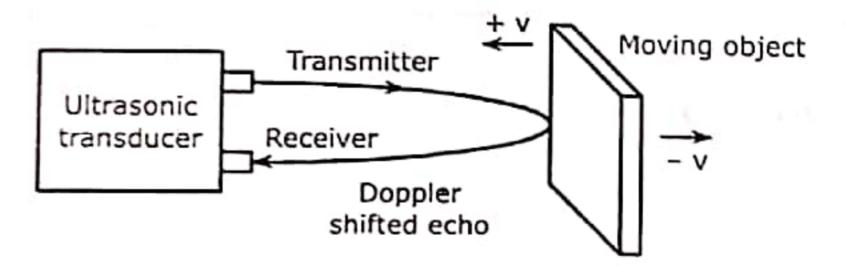



Fig. 6.11 : Velocity measurement by pulse Doppler method

The time of flight in the Doppler shifted echo is proportional to the velocity (v) of the object. Velocity measurement with high resolution requires the calibration of the Doppler shifted time of flight and an accurate distance measurement of the object.

# 6.6 Optical Sensors

Optical sensors are the transducers that convert optical energy into an electronic signal. The purpose of an optical sensor is to measure a physical quantity of light. Optical Sensors are used for contactless detections.

TRACTOR PLANTS TRACE

There are different kinds of optical sensors, the most common types which we have been using in our real world applications are —

- (i) Photoconductive devices
- (ii) Photovoltaic cells
  - (iii) Photodiodes.

### 6.6.1 : Photodiodes

A photodiode is a semiconductor device that converts light into an electric current. The current is generated when photons are absorbed in the photodiode.

#### Principle : Photoconductivity

Photoconductivity is a phenomenon in which the conductivity of a material increases when it is terminated by radiation.

When radiation with photon energy  $E = h\upsilon \ge E_g$  being the band gap energy of the diode material, is incident on a material like semiconductor, it is absorbed by the material. The energy generates electron-hole pairs.

Each photon of energy htt creates one electron hole pair. The density of the generated electron-hole pair depends on the intensity of the incident radiation. In this way the number of free charge carriers increases which increases the conductivity of the semiconductor.

# **Construction and Working**

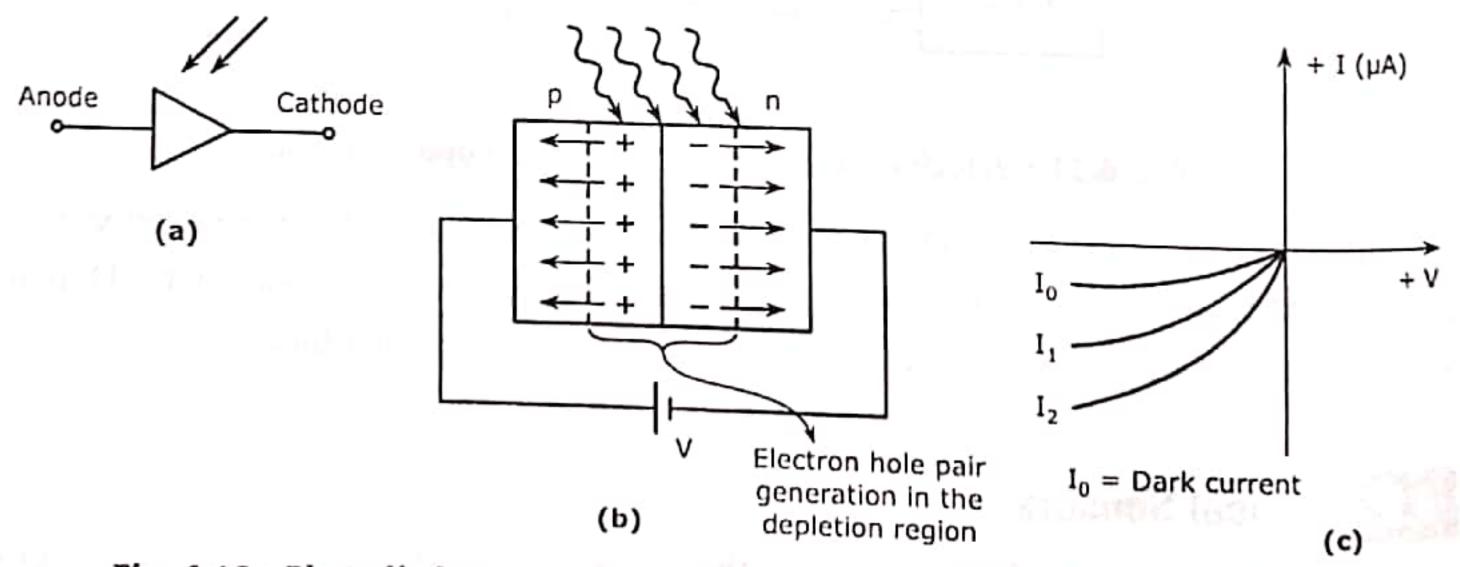



Fig. 6.12 : Photodiodes — (a) Symbol, (b) Circuit, (c) I-V characteristic curve

A photodiode is a normal reverse biased p-n junction diode. Materials commonly used for photodiodes are Si, Ge, PbS and InGaAs. Figure 6.12 (a) shows the symbol of a

**Engineering Physics - II** 

photodiode. When light is incident on the diode surface as seen in Fig. 6.12 (b) additional electron hole pairs are generated and boost the conduction resulting in an increase in the reverse current. Thus, by controlling the illumination level the current flowing through the device can be regulated. As shown in Fig. 6.12 (c) in reverse biase even in the absence of the incident light, there is a small reverse current due to the minority carriers. This is called dark current.

#### Applications

1. Ambient light sensors : An ambient light sensor is a component used in smartphones, electronic notebook, other mobile devices, automotive displays and LCD TVs. It is a photodetector that is used to sense the amount of ambient light present and appropriately dim the screen light of the device to match it. This avoids having the screen be too bright in a dark space or too dim in daylight. Dimming the screen on a mobile device also prolongs the lifetime of the battery.

2. Radiation flux measurement : Radiation flux or radiant power is the radiant energy emitted, reflected, transmitted or received per unit time.

The radiation flus is given by

$$\phi = \frac{L}{4\pi r^2} (W/m^2)$$

where, L is the Luminosity or the total power output of the source and r is the distance from the radiation source.

3. Optical mouse : A very familiar optical sensor is a computer mouse which is an optical mouse. This sensor uses a LED sensor and light detector such as an array of photodiodes to detect movements relative to a surface *i.e.*, the computer screen, in this case.

# 6.7 Pyroelectric Sensors

Pyroelectric sensors are a kind of thermal sensors in which temperature variations are converted into electrical signals.

#### Principle

**Pyroelectricity :** Pyroelectricity is a property of certain crystalline materials called pyroelectric materials. A pyroelectric materials are naturally polarized and as a result contain large electric fields. They also possess a spontaneous polarization when subjected to

**Engineering Physics - II** 

temperature variations. The change in temperature modifies the position of atoms slightly within the crystal structure such that the polarization of the material changes. This change in polarization gives rise to a voltage across the crystal. If the temperature stays constant at its new value the pyroelectric voltage gradually disappears due to a leakage current.

The most important pyroelectric materials are ceramics, synthetic polymers and ceramic-polymer composites. All pyroelectric materials are also piezoelectric. However, all piezoelectric materials are not pyroelectric. Some piezoelectric materials with crystal symmetry do not allow pyroelectricity. Pyroelectricity is also found to be present in bones and tendons of human body.

#### Construction and Working

Pyroelectric sensors are constructed from single pyroelectric crystals which are dielectrics. When an electric field is applied across any dielectric material electrical polarization takes place. The magnitude of the polarization is a function of the dielectric constant of the material.

Infrared radiation

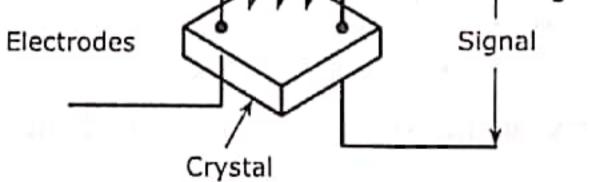



Fig. 6.13 : Pyroelectric sensor

As seen in Fig. 6.13, the pyroelectric crystal is sandwiched between two electrodes which are infrared transparent. When radiation falls on the crystal changes are accumulated on its surfaces and the crystal acts as a temperature dependent capacitor with a resulting voltage V = Q/C where Q is the accumulated charge and C is the crystal capacitance.

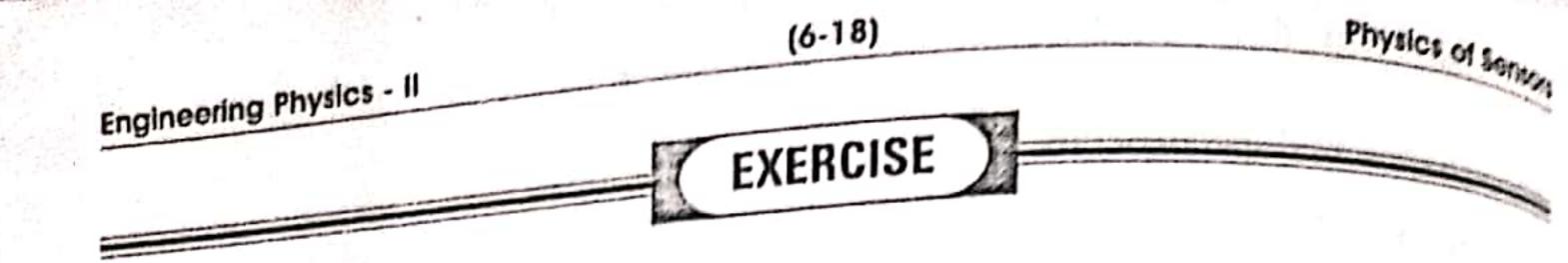
As the incident infrared radiation alters the surface charge distribution across the crystal, a current is detected in the external circuit connected to it. The magnitude of this current is directly proportional to the surface area of the crystal and the rate of change of polarization with temperature.

#### **Applications of Pyroelectric sensors**

This type of sensors are widely used in —

(i) absolute radiometry

deline de sessere trata voit i adda.


12,3914.0

- (ii) infrared spectroscopy
- (iii) laser interferometry
- (iv) simple thermal imaging systems

**Important Points to Remember** 

- 1. A transducer is a device that receives a kind of energy from one system and transmits it to another device in a different firm.
- Resistive sensors are resistive transducers whose resistance varies with different physical quantities like temperature, pressure, force, displacement, vibration, etc.
- Pt100 sensors are made up of platinum (Pt) with a resistance of 100 Ohms at 0° C.
- Thermocouples are temperature sensors that work on thermoelectricity, *i.e.*, the electricity generated by a temperature difference.
- 5. A pressure sensor is a device which converts an applied pressure into a measurable electrical signal, used to measure pressure of gases and liquids.
- 6. Capacitive pressure sensors are devices used to measure pressure by detecting the changes in the electrical capacitance caused by the movement of a diaphragm due to the pressure applied.
- 7. Inductive transducers are the sensors in which with the help of a change in the self inductance of a single coil or the mutual inductance between two coils a physical quantity is measured.
- 8. Piezoelectric sensor is an electroacoustic transducer used to measure a physical quantity with the conversion of pressure or mechanical stress into an electrical.
- Optical sensors are the transducers that convert optical energy into an electronic signal. Optical sensors are used for contactless detections.
- 10. Photodiode is a semiconductor device that converts light into an electric current.
- Pyroelectric sensors are a kind of thermal sensors in which temperature variation are converted into electrical signals.

HOXOR LEAD IN THE FIT I WARREN DES



Short Answer Type

- Define a transducer. State different types of transducers. What are resistive sensors? State its working principle. 1.
- Explain the theory of temperature measurement by a resistive sensor. 2.
- 3.
- Explain the working principle of a thermocouple.
- 4.
- State and explain Seebeck effect.
- 6. Write short notes on J and K thermocouples.
- Explain the method of humidity measurement using resistive sensors. 7.
- Define a pressure sensor. 8.
- What is piezoelectricity? Explain piezoelectric effect. 9.
- Explain the concept of distance measurement with an ultrasonic transducer. 10.
- Explain the velocity measurement by ultrasonic transducer. 11.
- State and explain two applications of optical sensors. 12.
- Explain pyroelectricity. 13.
- State the applications of pyroelectric sensors. 14.

#### Long Answer Type

- 1. With a neat diagram, explain the theory and working of a platinum resistance (Pt 100) transducer.
- Define a pressure sensor. With a neat diagram explain the working of a capacitive 2. pressure sensor.
- With a neat diagram explain how pressure can be measured by inductive method. 3.
- Explain piezoelectric effect. With a neat diagram describe ultrasonic generation by 4. piezoelectric method.
- What is an optical sensor? With a neat diagram explain the construction and working 5. of a photodiode.
- What are pyroelectric sensors? With a heat diagram explain the principle and working 6. of a pyroelectric sensor.